Properties

Label 2-41280-1.1-c1-0-38
Degree $2$
Conductor $41280$
Sign $-1$
Analytic cond. $329.622$
Root an. cond. $18.1555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 4·7-s + 9-s − 4·11-s + 2·13-s − 15-s + 6·17-s + 8·19-s + 4·21-s + 25-s − 27-s − 2·29-s − 8·31-s + 4·33-s − 4·35-s + 2·37-s − 2·39-s + 2·41-s + 43-s + 45-s + 8·47-s + 9·49-s − 6·51-s − 6·53-s − 4·55-s − 8·57-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 1.51·7-s + 1/3·9-s − 1.20·11-s + 0.554·13-s − 0.258·15-s + 1.45·17-s + 1.83·19-s + 0.872·21-s + 1/5·25-s − 0.192·27-s − 0.371·29-s − 1.43·31-s + 0.696·33-s − 0.676·35-s + 0.328·37-s − 0.320·39-s + 0.312·41-s + 0.152·43-s + 0.149·45-s + 1.16·47-s + 9/7·49-s − 0.840·51-s − 0.824·53-s − 0.539·55-s − 1.05·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(329.622\)
Root analytic conductor: \(18.1555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 41280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
43 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.22963928920687, −14.34302507779557, −13.82814473184367, −13.44816132965256, −12.84177214016273, −12.47179670514749, −12.09023170346718, −11.23733449064132, −10.80478037981123, −10.20135401460695, −9.800596942622946, −9.366171636748402, −8.863854204725930, −7.707048087782041, −7.604000169906983, −6.962436837692348, −6.084642699381938, −5.781741978403267, −5.421350824491338, −4.682784083174779, −3.687307674914514, −3.193910227674341, −2.776998809736673, −1.660568479447509, −0.8796128978466114, 0, 0.8796128978466114, 1.660568479447509, 2.776998809736673, 3.193910227674341, 3.687307674914514, 4.682784083174779, 5.421350824491338, 5.781741978403267, 6.084642699381938, 6.962436837692348, 7.604000169906983, 7.707048087782041, 8.863854204725930, 9.366171636748402, 9.800596942622946, 10.20135401460695, 10.80478037981123, 11.23733449064132, 12.09023170346718, 12.47179670514749, 12.84177214016273, 13.44816132965256, 13.82814473184367, 14.34302507779557, 15.22963928920687

Graph of the $Z$-function along the critical line