Properties

Label 2-41280-1.1-c1-0-45
Degree $2$
Conductor $41280$
Sign $-1$
Analytic cond. $329.622$
Root an. cond. $18.1555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s − 5·11-s − 13-s − 15-s + 5·17-s − 4·19-s + 3·23-s + 25-s + 27-s + 8·29-s − 9·31-s − 5·33-s − 8·37-s − 39-s − 5·41-s + 43-s − 45-s + 8·47-s − 7·49-s + 5·51-s + 13·53-s + 5·55-s − 4·57-s − 8·59-s + 8·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s − 1.50·11-s − 0.277·13-s − 0.258·15-s + 1.21·17-s − 0.917·19-s + 0.625·23-s + 1/5·25-s + 0.192·27-s + 1.48·29-s − 1.61·31-s − 0.870·33-s − 1.31·37-s − 0.160·39-s − 0.780·41-s + 0.152·43-s − 0.149·45-s + 1.16·47-s − 49-s + 0.700·51-s + 1.78·53-s + 0.674·55-s − 0.529·57-s − 1.04·59-s + 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(329.622\)
Root analytic conductor: \(18.1555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 41280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
43 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 5 T + p T^{2} \) 1.41.f
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 13 T + p T^{2} \) 1.53.an
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.99294745752644, −14.57731190455502, −13.98216573690953, −13.46377185810703, −12.89935330039109, −12.47379304046930, −12.06074115930840, −11.33509840845140, −10.59392824467277, −10.34475602445738, −9.923800034154028, −8.891546910541076, −8.745109093010952, −8.051576957677062, −7.488504651966982, −7.229830254674500, −6.410849337609021, −5.645232791750276, −5.045053331931768, −4.652179274655550, −3.650445456290571, −3.316595933280144, −2.541076993952438, −1.989469634629209, −0.9408085097086323, 0, 0.9408085097086323, 1.989469634629209, 2.541076993952438, 3.316595933280144, 3.650445456290571, 4.652179274655550, 5.045053331931768, 5.645232791750276, 6.410849337609021, 7.229830254674500, 7.488504651966982, 8.051576957677062, 8.745109093010952, 8.891546910541076, 9.923800034154028, 10.34475602445738, 10.59392824467277, 11.33509840845140, 12.06074115930840, 12.47379304046930, 12.89935330039109, 13.46377185810703, 13.98216573690953, 14.57731190455502, 14.99294745752644

Graph of the $Z$-function along the critical line