Properties

Label 41280.cc
Number of curves $1$
Conductor $41280$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 41280.cc1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(43\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 41280.cc do not have complex multiplication.

Modular form 41280.2.a.cc

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{9} - 5 q^{11} - q^{13} - q^{15} + 5 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 41280.cc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
41280.cc1 41280bc1 \([0, 1, 0, -67121, 6775305]\) \(-522547125460258816/9506987907075\) \(-608447226052800\) \([]\) \(215040\) \(1.6328\) \(\Gamma_0(N)\)-optimal