Properties

Label 2-40656-1.1-c1-0-30
Degree $2$
Conductor $40656$
Sign $1$
Analytic cond. $324.639$
Root an. cond. $18.0177$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 4·5-s + 7-s + 9-s − 2·13-s − 4·15-s − 2·17-s + 6·19-s + 21-s + 2·23-s + 11·25-s + 27-s + 6·29-s + 8·31-s − 4·35-s + 6·37-s − 2·39-s − 6·41-s + 10·43-s − 4·45-s − 2·47-s + 49-s − 2·51-s − 12·53-s + 6·57-s − 4·59-s + 6·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.78·5-s + 0.377·7-s + 1/3·9-s − 0.554·13-s − 1.03·15-s − 0.485·17-s + 1.37·19-s + 0.218·21-s + 0.417·23-s + 11/5·25-s + 0.192·27-s + 1.11·29-s + 1.43·31-s − 0.676·35-s + 0.986·37-s − 0.320·39-s − 0.937·41-s + 1.52·43-s − 0.596·45-s − 0.291·47-s + 1/7·49-s − 0.280·51-s − 1.64·53-s + 0.794·57-s − 0.520·59-s + 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40656\)    =    \(2^{4} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(324.639\)
Root analytic conductor: \(18.0177\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40656,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.241186194\)
\(L(\frac12)\) \(\approx\) \(2.241186194\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.76992960822922, −14.34586239203452, −13.83623914254317, −13.25287928035258, −12.49704871902279, −12.13879288440415, −11.73745920132580, −11.09625071338666, −10.80965641868874, −9.887298832120353, −9.495647877575361, −8.759290685726093, −8.235317490083637, −7.828083402019586, −7.478240854919605, −6.797016735451237, −6.295020820541967, −5.025136148418864, −4.866002273656108, −4.167639807330517, −3.580481756131769, −2.939018102729304, −2.442880436867326, −1.199848174657156, −0.6011875303859819, 0.6011875303859819, 1.199848174657156, 2.442880436867326, 2.939018102729304, 3.580481756131769, 4.167639807330517, 4.866002273656108, 5.025136148418864, 6.295020820541967, 6.797016735451237, 7.478240854919605, 7.828083402019586, 8.235317490083637, 8.759290685726093, 9.495647877575361, 9.887298832120353, 10.80965641868874, 11.09625071338666, 11.73745920132580, 12.13879288440415, 12.49704871902279, 13.25287928035258, 13.83623914254317, 14.34586239203452, 14.76992960822922

Graph of the $Z$-function along the critical line