Properties

Label 2-40560-1.1-c1-0-11
Degree $2$
Conductor $40560$
Sign $1$
Analytic cond. $323.873$
Root an. cond. $17.9964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s − 4·11-s − 15-s − 4·17-s + 4·19-s + 6·23-s + 25-s + 27-s + 4·29-s + 10·31-s − 4·33-s − 4·37-s + 2·41-s − 12·43-s − 45-s − 7·49-s − 4·51-s − 2·53-s + 4·55-s + 4·57-s − 4·59-s − 10·61-s − 10·67-s + 6·69-s + 12·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s − 1.20·11-s − 0.258·15-s − 0.970·17-s + 0.917·19-s + 1.25·23-s + 1/5·25-s + 0.192·27-s + 0.742·29-s + 1.79·31-s − 0.696·33-s − 0.657·37-s + 0.312·41-s − 1.82·43-s − 0.149·45-s − 49-s − 0.560·51-s − 0.274·53-s + 0.539·55-s + 0.529·57-s − 0.520·59-s − 1.28·61-s − 1.22·67-s + 0.722·69-s + 1.42·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40560\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(323.873\)
Root analytic conductor: \(17.9964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.064951211\)
\(L(\frac12)\) \(\approx\) \(2.064951211\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.99388487681240, −14.12715053978063, −13.63056749475628, −13.40045502002201, −12.73168846518159, −12.22965608165373, −11.64852231394635, −11.05056824349261, −10.59800912105858, −9.993063247021462, −9.506347559929221, −8.809763568819190, −8.333270802572870, −7.904199084199348, −7.330011896151109, −6.708090957603105, −6.244592332061938, −5.169149240268655, −4.877390115882612, −4.330888350794202, −3.217519270229268, −3.097416383203662, −2.321962494538675, −1.435473900542590, −0.5109703614484098, 0.5109703614484098, 1.435473900542590, 2.321962494538675, 3.097416383203662, 3.217519270229268, 4.330888350794202, 4.877390115882612, 5.169149240268655, 6.244592332061938, 6.708090957603105, 7.330011896151109, 7.904199084199348, 8.333270802572870, 8.809763568819190, 9.506347559929221, 9.993063247021462, 10.59800912105858, 11.05056824349261, 11.64852231394635, 12.22965608165373, 12.73168846518159, 13.40045502002201, 13.63056749475628, 14.12715053978063, 14.99388487681240

Graph of the $Z$-function along the critical line