Properties

Label 2-398544-1.1-c1-0-1
Degree $2$
Conductor $398544$
Sign $1$
Analytic cond. $3182.38$
Root an. cond. $56.4126$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 3·7-s + 9-s + 3·11-s − 4·13-s + 15-s − 7·17-s + 3·21-s + 23-s − 4·25-s − 27-s − 4·29-s + 10·31-s − 3·33-s + 3·35-s − 2·37-s + 4·39-s − 10·41-s + 43-s − 45-s + 7·47-s + 2·49-s + 7·51-s − 2·53-s − 3·55-s + 2·59-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 1.13·7-s + 1/3·9-s + 0.904·11-s − 1.10·13-s + 0.258·15-s − 1.69·17-s + 0.654·21-s + 0.208·23-s − 4/5·25-s − 0.192·27-s − 0.742·29-s + 1.79·31-s − 0.522·33-s + 0.507·35-s − 0.328·37-s + 0.640·39-s − 1.56·41-s + 0.152·43-s − 0.149·45-s + 1.02·47-s + 2/7·49-s + 0.980·51-s − 0.274·53-s − 0.404·55-s + 0.260·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 398544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 398544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(398544\)    =    \(2^{4} \cdot 3 \cdot 19^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(3182.38\)
Root analytic conductor: \(56.4126\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 398544,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3266324111\)
\(L(\frac12)\) \(\approx\) \(0.3266324111\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
19 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 7 T + p T^{2} \) 1.17.h
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.33926383529466, −12.04279347763566, −11.56620202633672, −11.19922894298288, −10.66699651820091, −10.11881611924943, −9.769330943829394, −9.326615087899518, −8.944102555242554, −8.389692997152640, −7.785181377153441, −7.310783995345384, −6.704885973906500, −6.557297002234315, −6.193537638688529, −5.414273422922072, −4.964259454278442, −4.410484225252943, −3.997054909144861, −3.525324619389314, −2.861603274951265, −2.300274144041143, −1.755245152458984, −0.8734176452049560, −0.1838861475615287, 0.1838861475615287, 0.8734176452049560, 1.755245152458984, 2.300274144041143, 2.861603274951265, 3.525324619389314, 3.997054909144861, 4.410484225252943, 4.964259454278442, 5.414273422922072, 6.193537638688529, 6.557297002234315, 6.704885973906500, 7.310783995345384, 7.785181377153441, 8.389692997152640, 8.944102555242554, 9.326615087899518, 9.769330943829394, 10.11881611924943, 10.66699651820091, 11.19922894298288, 11.56620202633672, 12.04279347763566, 12.33926383529466

Graph of the $Z$-function along the critical line