Properties

Label 2-3952-1.1-c1-0-30
Degree $2$
Conductor $3952$
Sign $1$
Analytic cond. $31.5568$
Root an. cond. $5.61755$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·7-s − 3·9-s + 6·11-s − 13-s + 17-s + 19-s + 3·23-s − 25-s − 6·29-s + 9·31-s − 4·35-s − 37-s + 3·41-s + 3·43-s − 6·45-s + 6·47-s − 3·49-s + 6·53-s + 12·55-s − 5·59-s + 7·61-s + 6·63-s − 2·65-s − 3·67-s − 8·71-s − 6·73-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.755·7-s − 9-s + 1.80·11-s − 0.277·13-s + 0.242·17-s + 0.229·19-s + 0.625·23-s − 1/5·25-s − 1.11·29-s + 1.61·31-s − 0.676·35-s − 0.164·37-s + 0.468·41-s + 0.457·43-s − 0.894·45-s + 0.875·47-s − 3/7·49-s + 0.824·53-s + 1.61·55-s − 0.650·59-s + 0.896·61-s + 0.755·63-s − 0.248·65-s − 0.366·67-s − 0.949·71-s − 0.702·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3952 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3952 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3952\)    =    \(2^{4} \cdot 13 \cdot 19\)
Sign: $1$
Analytic conductor: \(31.5568\)
Root analytic conductor: \(5.61755\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3952,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.119079743\)
\(L(\frac12)\) \(\approx\) \(2.119079743\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - T + p T^{2} \) 1.17.ab
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 5 T + p T^{2} \) 1.59.f
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.845047563127073625933351501403, −7.64904269614290806124073532039, −6.84482249745042340603670162937, −6.08415882890512186385269517373, −5.82115287805185167947594015246, −4.71449282224709373801940183997, −3.72709382928075820880460285470, −2.97435218403588600481804486295, −2.00882242520336247099209519411, −0.849287523239689284589233499708, 0.849287523239689284589233499708, 2.00882242520336247099209519411, 2.97435218403588600481804486295, 3.72709382928075820880460285470, 4.71449282224709373801940183997, 5.82115287805185167947594015246, 6.08415882890512186385269517373, 6.84482249745042340603670162937, 7.64904269614290806124073532039, 8.845047563127073625933351501403

Graph of the $Z$-function along the critical line