sage:E = EllipticCurve("f1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 3952.f1 has
rank \(0\).
|
Bad L-factors: |
Prime |
L-Factor |
\(2\) | \(1\) |
\(13\) | \(1 + T\) |
\(19\) | \(1 - T\) |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
\(3\) |
\( 1 + 3 T^{2}\) |
1.3.a
|
\(5\) |
\( 1 - 2 T + 5 T^{2}\) |
1.5.ac
|
\(7\) |
\( 1 + 2 T + 7 T^{2}\) |
1.7.c
|
\(11\) |
\( 1 - 6 T + 11 T^{2}\) |
1.11.ag
|
\(17\) |
\( 1 - T + 17 T^{2}\) |
1.17.ab
|
\(23\) |
\( 1 - 3 T + 23 T^{2}\) |
1.23.ad
|
\(29\) |
\( 1 + 6 T + 29 T^{2}\) |
1.29.g
|
$\cdots$ | $\cdots$ | $\cdots$ |
|
|
See L-function page for more information |
The elliptic curves in class 3952.f do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 3952.f
sage:E.isogeny_class().curves