Properties

Label 2-388416-1.1-c1-0-109
Degree $2$
Conductor $388416$
Sign $-1$
Analytic cond. $3101.51$
Root an. cond. $55.6912$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 7-s + 9-s + 4·11-s + 2·13-s + 2·15-s − 4·19-s + 21-s − 8·23-s − 25-s − 27-s + 6·29-s − 4·33-s + 2·35-s − 2·37-s − 2·39-s − 10·41-s + 4·43-s − 2·45-s + 49-s − 6·53-s − 8·55-s + 4·57-s + 4·59-s + 6·61-s − 63-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 0.377·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s + 0.516·15-s − 0.917·19-s + 0.218·21-s − 1.66·23-s − 1/5·25-s − 0.192·27-s + 1.11·29-s − 0.696·33-s + 0.338·35-s − 0.328·37-s − 0.320·39-s − 1.56·41-s + 0.609·43-s − 0.298·45-s + 1/7·49-s − 0.824·53-s − 1.07·55-s + 0.529·57-s + 0.520·59-s + 0.768·61-s − 0.125·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388416\)    =    \(2^{6} \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(3101.51\)
Root analytic conductor: \(55.6912\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 388416,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.34726302101980, −12.30898972613007, −11.80618939585461, −11.35420012742039, −11.06625380280405, −10.40298170804201, −10.05639533180482, −9.612809445039378, −9.027361671453255, −8.525571525247400, −8.096378418513055, −7.817402123508013, −6.936623355955192, −6.692943972216083, −6.303398583644163, −5.887389809618092, −5.177078978483692, −4.692963037542214, −3.980776742421871, −3.854573245352390, −3.458180687323126, −2.519992086226743, −1.954589092147756, −1.308583809288617, −0.6222756828674368, 0, 0.6222756828674368, 1.308583809288617, 1.954589092147756, 2.519992086226743, 3.458180687323126, 3.854573245352390, 3.980776742421871, 4.692963037542214, 5.177078978483692, 5.887389809618092, 6.303398583644163, 6.692943972216083, 6.936623355955192, 7.817402123508013, 8.096378418513055, 8.525571525247400, 9.027361671453255, 9.612809445039378, 10.05639533180482, 10.40298170804201, 11.06625380280405, 11.35420012742039, 11.80618939585461, 12.30898972613007, 12.34726302101980

Graph of the $Z$-function along the critical line