Properties

Label 2-388080-1.1-c1-0-7
Degree $2$
Conductor $388080$
Sign $1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 11-s − 2·13-s − 6·17-s − 4·19-s + 25-s + 6·29-s − 4·31-s + 2·37-s − 6·41-s + 4·43-s + 6·53-s + 55-s − 12·59-s − 14·61-s + 2·65-s + 16·67-s − 2·73-s + 4·79-s + 6·85-s − 6·89-s + 4·95-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.301·11-s − 0.554·13-s − 1.45·17-s − 0.917·19-s + 1/5·25-s + 1.11·29-s − 0.718·31-s + 0.328·37-s − 0.937·41-s + 0.609·43-s + 0.824·53-s + 0.134·55-s − 1.56·59-s − 1.79·61-s + 0.248·65-s + 1.95·67-s − 0.234·73-s + 0.450·79-s + 0.650·85-s − 0.635·89-s + 0.410·95-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3602351076\)
\(L(\frac12)\) \(\approx\) \(0.3602351076\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.54686629576508, −12.08546778930320, −11.46018342434510, −11.14615517208039, −10.64519255009542, −10.34742072586884, −9.777459698349358, −9.108969706657086, −8.940932803739249, −8.319527815172540, −7.959215853972619, −7.422212522089257, −6.923336655007380, −6.495278813463046, −6.121571721524139, −5.374012775832533, −4.919094414377948, −4.402460059441723, −4.123990550053124, −3.402847473526634, −2.815677652410337, −2.318394530154636, −1.837805284136731, −1.023508187993305, −0.1645029300605285, 0.1645029300605285, 1.023508187993305, 1.837805284136731, 2.318394530154636, 2.815677652410337, 3.402847473526634, 4.123990550053124, 4.402460059441723, 4.919094414377948, 5.374012775832533, 6.121571721524139, 6.495278813463046, 6.923336655007380, 7.422212522089257, 7.959215853972619, 8.319527815172540, 8.940932803739249, 9.108969706657086, 9.777459698349358, 10.34742072586884, 10.64519255009542, 11.14615517208039, 11.46018342434510, 12.08546778930320, 12.54686629576508

Graph of the $Z$-function along the critical line