Properties

Label 2-388080-1.1-c1-0-290
Degree $2$
Conductor $388080$
Sign $-1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 11-s + 5·13-s − 5·19-s + 6·23-s + 25-s + 31-s − 7·37-s + 43-s − 12·47-s − 6·53-s − 55-s − 6·59-s − 10·61-s + 5·65-s + 13·67-s − 12·71-s + 5·73-s + 79-s − 5·95-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 6·115-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.301·11-s + 1.38·13-s − 1.14·19-s + 1.25·23-s + 1/5·25-s + 0.179·31-s − 1.15·37-s + 0.152·43-s − 1.75·47-s − 0.824·53-s − 0.134·55-s − 0.781·59-s − 1.28·61-s + 0.620·65-s + 1.58·67-s − 1.42·71-s + 0.585·73-s + 0.112·79-s − 0.512·95-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 0.559·115-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92666635969308, −12.29443134940476, −11.72101446847500, −11.25064266849782, −10.79157527526287, −10.56235491669441, −10.09353296369684, −9.360173692628870, −9.119957089336121, −8.615283417040883, −8.168798314937339, −7.815066190463230, −7.002199815491535, −6.690377882098147, −6.222849763566244, −5.827181389177364, −5.202283679808891, −4.751152757336243, −4.298922813687288, −3.515541066833182, −3.244028778134473, −2.628439591226326, −1.843427030929954, −1.541811920436059, −0.7952945146864667, 0, 0.7952945146864667, 1.541811920436059, 1.843427030929954, 2.628439591226326, 3.244028778134473, 3.515541066833182, 4.298922813687288, 4.751152757336243, 5.202283679808891, 5.827181389177364, 6.222849763566244, 6.690377882098147, 7.002199815491535, 7.815066190463230, 8.168798314937339, 8.615283417040883, 9.119957089336121, 9.360173692628870, 10.09353296369684, 10.56235491669441, 10.79157527526287, 11.25064266849782, 11.72101446847500, 12.29443134940476, 12.92666635969308

Graph of the $Z$-function along the critical line