Properties

Label 2-388080-1.1-c1-0-231
Degree $2$
Conductor $388080$
Sign $-1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 11-s − 6·13-s + 8·17-s + 4·19-s − 7·23-s + 25-s + 9·29-s + 6·31-s − 2·37-s − 3·41-s + 43-s − 8·47-s + 2·53-s + 55-s − 6·59-s − 5·61-s + 6·65-s − 67-s + 4·71-s + 8·73-s − 10·79-s + 9·83-s − 8·85-s − 89-s − 4·95-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.301·11-s − 1.66·13-s + 1.94·17-s + 0.917·19-s − 1.45·23-s + 1/5·25-s + 1.67·29-s + 1.07·31-s − 0.328·37-s − 0.468·41-s + 0.152·43-s − 1.16·47-s + 0.274·53-s + 0.134·55-s − 0.781·59-s − 0.640·61-s + 0.744·65-s − 0.122·67-s + 0.474·71-s + 0.936·73-s − 1.12·79-s + 0.987·83-s − 0.867·85-s − 0.105·89-s − 0.410·95-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.38749019694449, −12.19829644093530, −11.90652166810230, −11.60922887652295, −10.78042807595705, −10.24332124525803, −10.01709775962468, −9.702272025775343, −9.189021728114398, −8.367964730432307, −8.020634460052280, −7.776163451669861, −7.314751162550557, −6.720359965214516, −6.287993358284443, −5.572782835257995, −5.252478144642129, −4.715154872987442, −4.346302644319334, −3.566436975024645, −3.096180067981708, −2.746193149154368, −2.050711010224409, −1.324379221584605, −0.7184441581414923, 0, 0.7184441581414923, 1.324379221584605, 2.050711010224409, 2.746193149154368, 3.096180067981708, 3.566436975024645, 4.346302644319334, 4.715154872987442, 5.252478144642129, 5.572782835257995, 6.287993358284443, 6.720359965214516, 7.314751162550557, 7.776163451669861, 8.020634460052280, 8.367964730432307, 9.189021728114398, 9.702272025775343, 10.01709775962468, 10.24332124525803, 10.78042807595705, 11.60922887652295, 11.90652166810230, 12.19829644093530, 12.38749019694449

Graph of the $Z$-function along the critical line