Properties

Label 2-388080-1.1-c1-0-4
Degree $2$
Conductor $388080$
Sign $1$
Analytic cond. $3098.83$
Root an. cond. $55.6671$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 11-s − 6·13-s − 6·17-s + 4·19-s + 25-s + 2·29-s − 8·31-s − 2·37-s + 4·41-s − 6·43-s − 8·47-s + 2·53-s + 55-s + 8·59-s + 2·61-s + 6·65-s − 8·67-s − 10·71-s − 6·73-s − 10·79-s + 16·83-s + 6·85-s + 6·89-s − 4·95-s + 14·97-s + 101-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.301·11-s − 1.66·13-s − 1.45·17-s + 0.917·19-s + 1/5·25-s + 0.371·29-s − 1.43·31-s − 0.328·37-s + 0.624·41-s − 0.914·43-s − 1.16·47-s + 0.274·53-s + 0.134·55-s + 1.04·59-s + 0.256·61-s + 0.744·65-s − 0.977·67-s − 1.18·71-s − 0.702·73-s − 1.12·79-s + 1.75·83-s + 0.650·85-s + 0.635·89-s − 0.410·95-s + 1.42·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 388080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(388080\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(3098.83\)
Root analytic conductor: \(55.6671\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 388080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2898816495\)
\(L(\frac12)\) \(\approx\) \(0.2898816495\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.42210520620379, −11.90698408865890, −11.66119071706556, −11.15152997757137, −10.71468858725935, −10.00512563204897, −9.977068772303249, −9.184388147562722, −8.900007809122855, −8.430364185361842, −7.692490576154230, −7.475510325217682, −7.045881568791097, −6.592611402704736, −5.956729223717048, −5.366061424200465, −4.890160387502601, −4.601507253165198, −4.010390855741554, −3.299599553887809, −2.967393637758536, −2.167041186122371, −1.956897516905058, −0.9912635821220390, −0.1495755394010171, 0.1495755394010171, 0.9912635821220390, 1.956897516905058, 2.167041186122371, 2.967393637758536, 3.299599553887809, 4.010390855741554, 4.601507253165198, 4.890160387502601, 5.366061424200465, 5.956729223717048, 6.592611402704736, 7.045881568791097, 7.475510325217682, 7.692490576154230, 8.430364185361842, 8.900007809122855, 9.184388147562722, 9.977068772303249, 10.00512563204897, 10.71468858725935, 11.15152997757137, 11.66119071706556, 11.90698408865890, 12.42210520620379

Graph of the $Z$-function along the critical line