Properties

Label 2-385728-1.1-c1-0-85
Degree $2$
Conductor $385728$
Sign $1$
Analytic cond. $3080.05$
Root an. cond. $55.4982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s + 4·11-s + 4·13-s + 2·15-s + 2·17-s − 4·23-s − 25-s − 27-s + 4·31-s − 4·33-s − 2·37-s − 4·39-s + 41-s − 12·43-s − 2·45-s − 2·47-s − 2·51-s + 4·53-s − 8·55-s + 4·59-s + 10·61-s − 8·65-s − 8·67-s + 4·69-s + 10·71-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s + 1.20·11-s + 1.10·13-s + 0.516·15-s + 0.485·17-s − 0.834·23-s − 1/5·25-s − 0.192·27-s + 0.718·31-s − 0.696·33-s − 0.328·37-s − 0.640·39-s + 0.156·41-s − 1.82·43-s − 0.298·45-s − 0.291·47-s − 0.280·51-s + 0.549·53-s − 1.07·55-s + 0.520·59-s + 1.28·61-s − 0.992·65-s − 0.977·67-s + 0.481·69-s + 1.18·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 385728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 385728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(385728\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 41\)
Sign: $1$
Analytic conductor: \(3080.05\)
Root analytic conductor: \(55.4982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 385728,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.457911992\)
\(L(\frac12)\) \(\approx\) \(2.457911992\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
41 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.37238286963913, −11.81644823451104, −11.56204019348160, −11.40639406717744, −10.73103177383611, −10.16034930232394, −9.927916720985716, −9.303126620891879, −8.653042365392257, −8.481530013604293, −7.835011874603382, −7.511910089627263, −6.802374316769187, −6.434136980757652, −6.136505658774469, −5.499947293067797, −4.951913604910610, −4.423045230180176, −3.832129796366950, −3.618150897491593, −3.152525761014849, −2.068138362966569, −1.707945651791584, −0.8518034122381208, −0.5573198316916465, 0.5573198316916465, 0.8518034122381208, 1.707945651791584, 2.068138362966569, 3.152525761014849, 3.618150897491593, 3.832129796366950, 4.423045230180176, 4.951913604910610, 5.499947293067797, 6.136505658774469, 6.434136980757652, 6.802374316769187, 7.511910089627263, 7.835011874603382, 8.481530013604293, 8.653042365392257, 9.303126620891879, 9.927916720985716, 10.16034930232394, 10.73103177383611, 11.40639406717744, 11.56204019348160, 11.81644823451104, 12.37238286963913

Graph of the $Z$-function along the critical line