Properties

Label 2-369600-1.1-c1-0-517
Degree $2$
Conductor $369600$
Sign $-1$
Analytic cond. $2951.27$
Root an. cond. $54.3256$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 11-s + 2·13-s + 6·17-s − 4·19-s − 21-s − 27-s + 6·29-s + 4·31-s + 33-s + 2·37-s − 2·39-s − 6·41-s + 4·43-s + 49-s − 6·51-s − 6·53-s + 4·57-s + 12·59-s − 14·61-s + 63-s + 16·67-s − 2·73-s − 77-s + 4·79-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.301·11-s + 0.554·13-s + 1.45·17-s − 0.917·19-s − 0.218·21-s − 0.192·27-s + 1.11·29-s + 0.718·31-s + 0.174·33-s + 0.328·37-s − 0.320·39-s − 0.937·41-s + 0.609·43-s + 1/7·49-s − 0.840·51-s − 0.824·53-s + 0.529·57-s + 1.56·59-s − 1.79·61-s + 0.125·63-s + 1.95·67-s − 0.234·73-s − 0.113·77-s + 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 369600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 369600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(369600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(2951.27\)
Root analytic conductor: \(54.3256\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 369600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
11 \( 1 + T \)
good13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71735130438739, −12.27002397651098, −11.77875248646068, −11.40280727404189, −10.97322832339718, −10.37913285079436, −10.14858541661742, −9.770973279974985, −8.997297415615314, −8.616640153187224, −8.086748209634002, −7.776813593322380, −7.224112208618144, −6.587533316400780, −6.235112854140062, −5.802041185917820, −5.229243616205677, −4.764196036915648, −4.399495849739169, −3.616382023847370, −3.317243930486031, −2.511766966312130, −2.028066930416400, −1.176565455126336, −0.9044928506736396, 0, 0.9044928506736396, 1.176565455126336, 2.028066930416400, 2.511766966312130, 3.317243930486031, 3.616382023847370, 4.399495849739169, 4.764196036915648, 5.229243616205677, 5.802041185917820, 6.235112854140062, 6.587533316400780, 7.224112208618144, 7.776813593322380, 8.086748209634002, 8.616640153187224, 8.997297415615314, 9.770973279974985, 10.14858541661742, 10.37913285079436, 10.97322832339718, 11.40280727404189, 11.77875248646068, 12.27002397651098, 12.71735130438739

Graph of the $Z$-function along the critical line