Properties

Label 2-36300-1.1-c1-0-42
Degree $2$
Conductor $36300$
Sign $-1$
Analytic cond. $289.856$
Root an. cond. $17.0251$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s − 4·13-s − 3·17-s + 4·19-s − 2·21-s + 3·23-s − 27-s − 31-s − 2·37-s + 4·39-s − 6·41-s + 8·43-s − 3·47-s − 3·49-s + 3·51-s − 9·53-s − 4·57-s + 12·59-s − 5·61-s + 2·63-s − 2·67-s − 3·69-s + 12·71-s + 8·73-s + 79-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s − 1.10·13-s − 0.727·17-s + 0.917·19-s − 0.436·21-s + 0.625·23-s − 0.192·27-s − 0.179·31-s − 0.328·37-s + 0.640·39-s − 0.937·41-s + 1.21·43-s − 0.437·47-s − 3/7·49-s + 0.420·51-s − 1.23·53-s − 0.529·57-s + 1.56·59-s − 0.640·61-s + 0.251·63-s − 0.244·67-s − 0.361·69-s + 1.42·71-s + 0.936·73-s + 0.112·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(36300\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(289.856\)
Root analytic conductor: \(17.0251\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 36300,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.12715531106290, −14.67020947728017, −14.16286019787867, −13.62501131526344, −12.99391911967560, −12.48428663083170, −11.95686170058401, −11.48080221252119, −11.00483417801024, −10.54084923839519, −9.811022724537407, −9.398051060424028, −8.805045419880823, −7.972259677806400, −7.686998694192412, −6.871604187294406, −6.620759049471590, −5.660597926184961, −5.102540253739967, −4.825375183227210, −4.081236461851218, −3.281686307869502, −2.476052791081971, −1.792032187797264, −0.9665939077382219, 0, 0.9665939077382219, 1.792032187797264, 2.476052791081971, 3.281686307869502, 4.081236461851218, 4.825375183227210, 5.102540253739967, 5.660597926184961, 6.620759049471590, 6.871604187294406, 7.686998694192412, 7.972259677806400, 8.805045419880823, 9.398051060424028, 9.811022724537407, 10.54084923839519, 11.00483417801024, 11.48080221252119, 11.95686170058401, 12.48428663083170, 12.99391911967560, 13.62501131526344, 14.16286019787867, 14.67020947728017, 15.12715531106290

Graph of the $Z$-function along the critical line