Properties

Label 2-360672-1.1-c1-0-15
Degree $2$
Conductor $360672$
Sign $-1$
Analytic cond. $2879.98$
Root an. cond. $53.6654$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s + 13-s − 2·19-s + 2·21-s − 8·23-s − 5·25-s − 27-s − 6·29-s − 2·31-s + 6·37-s − 39-s + 4·43-s + 8·47-s − 3·49-s − 6·53-s + 2·57-s + 4·59-s − 2·61-s − 2·63-s + 2·67-s + 8·69-s − 4·71-s + 2·73-s + 5·75-s − 12·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s + 0.277·13-s − 0.458·19-s + 0.436·21-s − 1.66·23-s − 25-s − 0.192·27-s − 1.11·29-s − 0.359·31-s + 0.986·37-s − 0.160·39-s + 0.609·43-s + 1.16·47-s − 3/7·49-s − 0.824·53-s + 0.264·57-s + 0.520·59-s − 0.256·61-s − 0.251·63-s + 0.244·67-s + 0.963·69-s − 0.474·71-s + 0.234·73-s + 0.577·75-s − 1.35·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 360672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 360672 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(360672\)    =    \(2^{5} \cdot 3 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2879.98\)
Root analytic conductor: \(53.6654\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 360672,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
13 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.87734060775100, −12.25188516049543, −11.86866205673183, −11.30445637789705, −11.12963666617640, −10.29551819630084, −10.18748667622353, −9.613108014566733, −9.216069971700191, −8.730730078912845, −8.061238059320114, −7.655769416543019, −7.275620583337451, −6.618133333841738, −6.090189001947663, −5.895105552608323, −5.494173522749570, −4.631498732252588, −4.257077862325039, −3.724386635588498, −3.347774694225690, −2.470598175612578, −2.047162021857516, −1.425896061501242, −0.5498778755157254, 0, 0.5498778755157254, 1.425896061501242, 2.047162021857516, 2.470598175612578, 3.347774694225690, 3.724386635588498, 4.257077862325039, 4.631498732252588, 5.494173522749570, 5.895105552608323, 6.090189001947663, 6.618133333841738, 7.275620583337451, 7.655769416543019, 8.061238059320114, 8.730730078912845, 9.216069971700191, 9.613108014566733, 10.18748667622353, 10.29551819630084, 11.12963666617640, 11.30445637789705, 11.86866205673183, 12.25188516049543, 12.87734060775100

Graph of the $Z$-function along the critical line