Properties

Label 2-358974-1.1-c1-0-78
Degree $2$
Conductor $358974$
Sign $-1$
Analytic cond. $2866.42$
Root an. cond. $53.5389$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s + 11-s − 4·13-s + 16-s + 2·17-s + 2·19-s − 22-s + 2·23-s − 5·25-s + 4·26-s − 10·29-s + 8·31-s − 32-s − 2·34-s + 37-s − 2·38-s − 6·41-s + 6·43-s + 44-s − 2·46-s − 4·47-s + 5·50-s − 4·52-s + 6·53-s + 10·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s + 0.301·11-s − 1.10·13-s + 1/4·16-s + 0.485·17-s + 0.458·19-s − 0.213·22-s + 0.417·23-s − 25-s + 0.784·26-s − 1.85·29-s + 1.43·31-s − 0.176·32-s − 0.342·34-s + 0.164·37-s − 0.324·38-s − 0.937·41-s + 0.914·43-s + 0.150·44-s − 0.294·46-s − 0.583·47-s + 0.707·50-s − 0.554·52-s + 0.824·53-s + 1.31·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 358974 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 358974 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(358974\)    =    \(2 \cdot 3^{2} \cdot 7^{2} \cdot 11 \cdot 37\)
Sign: $-1$
Analytic conductor: \(2866.42\)
Root analytic conductor: \(53.5389\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 358974,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
37 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.58694084381056, −12.24388752245678, −11.76514258062037, −11.34569561941591, −11.06329562029388, −10.26096138687970, −9.958774941923068, −9.674137906824681, −9.151523584459012, −8.747735268553521, −8.087367225063197, −7.734502995367077, −7.307564165957297, −6.941758456751002, −6.289943025049257, −5.805358249363188, −5.377175106863631, −4.754614009368188, −4.290898403794794, −3.478394888159122, −3.243892876521462, −2.378932821971357, −2.066665228152993, −1.346011071512097, −0.6984598894429709, 0, 0.6984598894429709, 1.346011071512097, 2.066665228152993, 2.378932821971357, 3.243892876521462, 3.478394888159122, 4.290898403794794, 4.754614009368188, 5.377175106863631, 5.805358249363188, 6.289943025049257, 6.941758456751002, 7.307564165957297, 7.734502995367077, 8.087367225063197, 8.747735268553521, 9.151523584459012, 9.674137906824681, 9.958774941923068, 10.26096138687970, 11.06329562029388, 11.34569561941591, 11.76514258062037, 12.24388752245678, 12.58694084381056

Graph of the $Z$-function along the critical line