Properties

Label 2-35700-1.1-c1-0-10
Degree $2$
Conductor $35700$
Sign $1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s + 4·13-s − 17-s − 4·19-s + 21-s − 27-s + 8·31-s + 10·37-s − 4·39-s + 6·41-s − 2·43-s + 6·47-s + 49-s + 51-s + 4·57-s − 12·59-s + 8·61-s − 63-s − 2·67-s − 12·71-s + 10·73-s + 2·79-s + 81-s − 6·83-s − 6·89-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s + 1.10·13-s − 0.242·17-s − 0.917·19-s + 0.218·21-s − 0.192·27-s + 1.43·31-s + 1.64·37-s − 0.640·39-s + 0.937·41-s − 0.304·43-s + 0.875·47-s + 1/7·49-s + 0.140·51-s + 0.529·57-s − 1.56·59-s + 1.02·61-s − 0.125·63-s − 0.244·67-s − 1.42·71-s + 1.17·73-s + 0.225·79-s + 1/9·81-s − 0.658·83-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.776935479\)
\(L(\frac12)\) \(\approx\) \(1.776935479\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.09761585391549, −14.32251306209209, −13.85579910433871, −13.17800984735668, −12.92236042468305, −12.33932884294275, −11.64186634179522, −11.29850975383825, −10.65771537079720, −10.30676305485210, −9.610079827270637, −9.057968586527463, −8.476725952332330, −7.924700914692567, −7.260133827065029, −6.541653216120201, −6.098197571796220, −5.813041520315024, −4.781927808897187, −4.351093086570836, −3.740458602052321, −2.909740409308538, −2.231691342617984, −1.255430581298009, −0.5653520501879424, 0.5653520501879424, 1.255430581298009, 2.231691342617984, 2.909740409308538, 3.740458602052321, 4.351093086570836, 4.781927808897187, 5.813041520315024, 6.098197571796220, 6.541653216120201, 7.260133827065029, 7.924700914692567, 8.476725952332330, 9.057968586527463, 9.610079827270637, 10.30676305485210, 10.65771537079720, 11.29850975383825, 11.64186634179522, 12.33932884294275, 12.92236042468305, 13.17800984735668, 13.85579910433871, 14.32251306209209, 15.09761585391549

Graph of the $Z$-function along the critical line