Properties

Label 35700.m
Number of curves $4$
Conductor $35700$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 35700.m have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 35700.m do not have complex multiplication.

Modular form 35700.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{7} + q^{9} + 4 q^{13} - q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 35700.m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
35700.m1 35700a3 \([0, -1, 0, -276615533, -1770680608938]\) \(9362964919254624808075264/2847703236328125\) \(711925809082031250000\) \([2]\) \(4478976\) \(3.3648\)  
35700.m2 35700a4 \([0, -1, 0, -275457908, -1786236773688]\) \(-577869079500481648517584/10209766387939453125\) \(-40839065551757812500000000\) \([2]\) \(8957952\) \(3.7114\)  
35700.m3 35700a1 \([0, -1, 0, -3969533, -1586055438]\) \(27669547892867989504/11658305782549125\) \(2914576445637281250000\) \([2]\) \(1492992\) \(2.8155\) \(\Gamma_0(N)\)-optimal
35700.m4 35700a2 \([0, -1, 0, 13253092, -11678513688]\) \(64359894910378156976/51964037412328125\) \(-207856149649312500000000\) \([2]\) \(2985984\) \(3.1621\)