Properties

Label 2-35700-1.1-c1-0-45
Degree $2$
Conductor $35700$
Sign $-1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s + 4·11-s + 2·13-s + 17-s − 2·19-s − 21-s − 6·23-s + 27-s − 2·29-s + 10·31-s + 4·33-s − 8·37-s + 2·39-s − 8·43-s + 4·47-s + 49-s + 51-s − 6·53-s − 2·57-s − 4·59-s + 2·61-s − 63-s − 8·67-s − 6·69-s + 8·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s + 0.242·17-s − 0.458·19-s − 0.218·21-s − 1.25·23-s + 0.192·27-s − 0.371·29-s + 1.79·31-s + 0.696·33-s − 1.31·37-s + 0.320·39-s − 1.21·43-s + 0.583·47-s + 1/7·49-s + 0.140·51-s − 0.824·53-s − 0.264·57-s − 0.520·59-s + 0.256·61-s − 0.125·63-s − 0.977·67-s − 0.722·69-s + 0.949·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.13677337455351, −14.62395411253348, −14.08543652166045, −13.67107660806570, −13.28645937558167, −12.47789825844168, −12.02488705694733, −11.71214290263878, −10.86159694232564, −10.34178058726155, −9.803098557698348, −9.305824045792408, −8.747930796023905, −8.216801733764583, −7.789642845064341, −6.831474645154210, −6.562277024145577, −5.994760516401375, −5.221338733797694, −4.359671485818401, −3.919237284555140, −3.353304034910643, −2.636498971943698, −1.763905108237942, −1.202023085123048, 0, 1.202023085123048, 1.763905108237942, 2.636498971943698, 3.353304034910643, 3.919237284555140, 4.359671485818401, 5.221338733797694, 5.994760516401375, 6.562277024145577, 6.831474645154210, 7.789642845064341, 8.216801733764583, 8.747930796023905, 9.305824045792408, 9.803098557698348, 10.34178058726155, 10.86159694232564, 11.71214290263878, 12.02488705694733, 12.47789825844168, 13.28645937558167, 13.67107660806570, 14.08543652166045, 14.62395411253348, 15.13677337455351

Graph of the $Z$-function along the critical line