Properties

Label 2-35550-1.1-c1-0-8
Degree $2$
Conductor $35550$
Sign $1$
Analytic cond. $283.868$
Root an. cond. $16.8483$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 4·7-s + 8-s + 2·11-s − 4·14-s + 16-s + 6·17-s + 4·19-s + 2·22-s − 4·28-s − 2·29-s − 8·31-s + 32-s + 6·34-s − 2·37-s + 4·38-s − 6·41-s + 4·43-s + 2·44-s + 9·49-s + 10·53-s − 4·56-s − 2·58-s + 10·61-s − 8·62-s + 64-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 1.51·7-s + 0.353·8-s + 0.603·11-s − 1.06·14-s + 1/4·16-s + 1.45·17-s + 0.917·19-s + 0.426·22-s − 0.755·28-s − 0.371·29-s − 1.43·31-s + 0.176·32-s + 1.02·34-s − 0.328·37-s + 0.648·38-s − 0.937·41-s + 0.609·43-s + 0.301·44-s + 9/7·49-s + 1.37·53-s − 0.534·56-s − 0.262·58-s + 1.28·61-s − 1.01·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35550\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(283.868\)
Root analytic conductor: \(16.8483\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.212710086\)
\(L(\frac12)\) \(\approx\) \(3.212710086\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
79 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 4 T + p T^{2} \) 1.73.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74315554469896, −14.41048264954248, −13.90965929082246, −13.23200478568226, −12.93951239561580, −12.30830879463403, −11.96096076438921, −11.42473721376115, −10.67533047234235, −10.09724858544060, −9.654879449690719, −9.218196503192203, −8.491057454183834, −7.704619439918530, −7.056516847809123, −6.846700761487920, −5.944891021401264, −5.623015443968300, −5.074169886781551, −4.019323876858974, −3.574826305947968, −3.213762305801041, −2.415722999239481, −1.477876304029013, −0.6057763105703913, 0.6057763105703913, 1.477876304029013, 2.415722999239481, 3.213762305801041, 3.574826305947968, 4.019323876858974, 5.074169886781551, 5.623015443968300, 5.944891021401264, 6.846700761487920, 7.056516847809123, 7.704619439918530, 8.491057454183834, 9.218196503192203, 9.654879449690719, 10.09724858544060, 10.67533047234235, 11.42473721376115, 11.96096076438921, 12.30830879463403, 12.93951239561580, 13.23200478568226, 13.90965929082246, 14.41048264954248, 14.74315554469896

Graph of the $Z$-function along the critical line