Properties

Label 2-354900-1.1-c1-0-4
Degree $2$
Conductor $354900$
Sign $1$
Analytic cond. $2833.89$
Root an. cond. $53.2343$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 2·17-s − 21-s + 4·23-s − 27-s + 2·29-s + 8·31-s − 8·37-s − 4·41-s − 8·43-s + 49-s + 2·51-s − 6·53-s − 8·59-s − 10·61-s + 63-s − 8·67-s − 4·69-s + 4·73-s + 12·79-s + 81-s + 8·83-s − 2·87-s − 12·89-s − 8·93-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.485·17-s − 0.218·21-s + 0.834·23-s − 0.192·27-s + 0.371·29-s + 1.43·31-s − 1.31·37-s − 0.624·41-s − 1.21·43-s + 1/7·49-s + 0.280·51-s − 0.824·53-s − 1.04·59-s − 1.28·61-s + 0.125·63-s − 0.977·67-s − 0.481·69-s + 0.468·73-s + 1.35·79-s + 1/9·81-s + 0.878·83-s − 0.214·87-s − 1.27·89-s − 0.829·93-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 354900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 354900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(354900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2833.89\)
Root analytic conductor: \(53.2343\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 354900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9589987474\)
\(L(\frac12)\) \(\approx\) \(0.9589987474\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.31577221210085, −12.15553572839937, −11.63972366608532, −11.19495502491978, −10.62261643861264, −10.53160903564042, −9.807116138423727, −9.454926263781373, −8.780557429446098, −8.521055305923556, −7.874632387026893, −7.538483241249733, −6.774713121187291, −6.564851656924280, −6.158737336111705, −5.266667185556335, −5.158486473347562, −4.552217900644059, −4.168339694811939, −3.351684470439409, −2.982234128829571, −2.280601814141625, −1.537761340304248, −1.212439839870713, −0.2710249865740243, 0.2710249865740243, 1.212439839870713, 1.537761340304248, 2.280601814141625, 2.982234128829571, 3.351684470439409, 4.168339694811939, 4.552217900644059, 5.158486473347562, 5.266667185556335, 6.158737336111705, 6.564851656924280, 6.774713121187291, 7.538483241249733, 7.874632387026893, 8.521055305923556, 8.780557429446098, 9.454926263781373, 9.807116138423727, 10.53160903564042, 10.62261643861264, 11.19495502491978, 11.63972366608532, 12.15553572839937, 12.31577221210085

Graph of the $Z$-function along the critical line