Properties

Label 2-348480-1.1-c1-0-418
Degree $2$
Conductor $348480$
Sign $-1$
Analytic cond. $2782.62$
Root an. cond. $52.7506$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·13-s + 2·17-s + 4·19-s + 25-s + 2·29-s + 2·37-s + 2·41-s + 12·43-s + 8·47-s − 7·49-s + 6·53-s + 12·59-s + 6·61-s − 2·65-s + 4·67-s + 6·73-s − 16·79-s + 4·83-s + 2·85-s − 10·89-s + 4·95-s + 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.554·13-s + 0.485·17-s + 0.917·19-s + 1/5·25-s + 0.371·29-s + 0.328·37-s + 0.312·41-s + 1.82·43-s + 1.16·47-s − 49-s + 0.824·53-s + 1.56·59-s + 0.768·61-s − 0.248·65-s + 0.488·67-s + 0.702·73-s − 1.80·79-s + 0.439·83-s + 0.216·85-s − 1.05·89-s + 0.410·95-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 348480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 348480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(348480\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2782.62\)
Root analytic conductor: \(52.7506\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 348480,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92578195461612, −12.29559881876690, −11.89474820804339, −11.48309527991384, −10.92230852379514, −10.52565258811736, −9.870995571811662, −9.739943452439710, −9.242139298233560, −8.636301955301222, −8.283783809287819, −7.571378986927915, −7.307943477300903, −6.862831385390535, −6.122913957503264, −5.839266210516447, −5.176311572695323, −5.006227482558708, −4.093562566584346, −3.867933539652256, −3.071927468283494, −2.496718788402939, −2.259485459365806, −1.177636828671172, −0.9963531473400068, 0, 0.9963531473400068, 1.177636828671172, 2.259485459365806, 2.496718788402939, 3.071927468283494, 3.867933539652256, 4.093562566584346, 5.006227482558708, 5.176311572695323, 5.839266210516447, 6.122913957503264, 6.862831385390535, 7.307943477300903, 7.571378986927915, 8.283783809287819, 8.636301955301222, 9.242139298233560, 9.739943452439710, 9.870995571811662, 10.52565258811736, 10.92230852379514, 11.48309527991384, 11.89474820804339, 12.29559881876690, 12.92578195461612

Graph of the $Z$-function along the critical line