Properties

Label 2-347600-1.1-c1-0-56
Degree $2$
Conductor $347600$
Sign $-1$
Analytic cond. $2775.59$
Root an. cond. $52.6839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s + 11-s + 2·13-s + 6·17-s − 4·19-s + 8·23-s − 6·29-s − 2·37-s − 6·41-s + 8·43-s + 8·47-s − 7·49-s + 6·53-s + 8·59-s + 10·61-s + 4·67-s − 8·71-s − 10·73-s + 79-s + 9·81-s − 4·83-s + 10·89-s − 2·97-s − 3·99-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 9-s + 0.301·11-s + 0.554·13-s + 1.45·17-s − 0.917·19-s + 1.66·23-s − 1.11·29-s − 0.328·37-s − 0.937·41-s + 1.21·43-s + 1.16·47-s − 49-s + 0.824·53-s + 1.04·59-s + 1.28·61-s + 0.488·67-s − 0.949·71-s − 1.17·73-s + 0.112·79-s + 81-s − 0.439·83-s + 1.05·89-s − 0.203·97-s − 0.301·99-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 347600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 347600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(347600\)    =    \(2^{4} \cdot 5^{2} \cdot 11 \cdot 79\)
Sign: $-1$
Analytic conductor: \(2775.59\)
Root analytic conductor: \(52.6839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 347600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
79 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.80755205102147, −12.27307181231439, −11.86967785341780, −11.38868849695563, −10.99674904762431, −10.61942309432593, −10.08610347644735, −9.578549630425173, −8.900535354929850, −8.857398290763957, −8.230760069049784, −7.818162567866192, −7.076966923008847, −6.946783179125705, −6.128237103147388, −5.765748529043784, −5.368780782423278, −4.899480100898060, −4.121568017435818, −3.669901797075668, −3.227914749964772, −2.651541039797436, −2.099397973033889, −1.294020275107597, −0.8355332864568439, 0, 0.8355332864568439, 1.294020275107597, 2.099397973033889, 2.651541039797436, 3.227914749964772, 3.669901797075668, 4.121568017435818, 4.899480100898060, 5.368780782423278, 5.765748529043784, 6.128237103147388, 6.946783179125705, 7.076966923008847, 7.818162567866192, 8.230760069049784, 8.857398290763957, 8.900535354929850, 9.578549630425173, 10.08610347644735, 10.61942309432593, 10.99674904762431, 11.38868849695563, 11.86967785341780, 12.27307181231439, 12.80755205102147

Graph of the $Z$-function along the critical line