| L(s)  = 1 | + 3-s     − 5-s     + 2·7-s     + 9-s     + 3·11-s     − 4·13-s     − 15-s         − 5·19-s     + 2·21-s     − 4·23-s     + 25-s     + 27-s     + 9·29-s         + 3·33-s     − 2·35-s     + 6·37-s     − 4·39-s     + 5·41-s     − 2·43-s     − 45-s     − 10·47-s     − 3·49-s         − 2·53-s     − 3·55-s     − 5·57-s     − 7·59-s     + 9·61-s  + ⋯ | 
| L(s)  = 1 | + 0.577·3-s     − 0.447·5-s     + 0.755·7-s     + 1/3·9-s     + 0.904·11-s     − 1.10·13-s     − 0.258·15-s         − 1.14·19-s     + 0.436·21-s     − 0.834·23-s     + 1/5·25-s     + 0.192·27-s     + 1.67·29-s         + 0.522·33-s     − 0.338·35-s     + 0.986·37-s     − 0.640·39-s     + 0.780·41-s     − 0.304·43-s     − 0.149·45-s     − 1.45·47-s     − 3/7·49-s         − 0.274·53-s     − 0.404·55-s     − 0.662·57-s     − 0.911·59-s     + 1.15·61-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 34680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 - T \) |  | 
|  | 5 | \( 1 + T \) |  | 
|  | 17 | \( 1 \) |  | 
| good | 7 | \( 1 - 2 T + p T^{2} \) | 1.7.ac | 
|  | 11 | \( 1 - 3 T + p T^{2} \) | 1.11.ad | 
|  | 13 | \( 1 + 4 T + p T^{2} \) | 1.13.e | 
|  | 19 | \( 1 + 5 T + p T^{2} \) | 1.19.f | 
|  | 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e | 
|  | 29 | \( 1 - 9 T + p T^{2} \) | 1.29.aj | 
|  | 31 | \( 1 + p T^{2} \) | 1.31.a | 
|  | 37 | \( 1 - 6 T + p T^{2} \) | 1.37.ag | 
|  | 41 | \( 1 - 5 T + p T^{2} \) | 1.41.af | 
|  | 43 | \( 1 + 2 T + p T^{2} \) | 1.43.c | 
|  | 47 | \( 1 + 10 T + p T^{2} \) | 1.47.k | 
|  | 53 | \( 1 + 2 T + p T^{2} \) | 1.53.c | 
|  | 59 | \( 1 + 7 T + p T^{2} \) | 1.59.h | 
|  | 61 | \( 1 - 9 T + p T^{2} \) | 1.61.aj | 
|  | 67 | \( 1 + 2 T + p T^{2} \) | 1.67.c | 
|  | 71 | \( 1 + 5 T + p T^{2} \) | 1.71.f | 
|  | 73 | \( 1 + 2 T + p T^{2} \) | 1.73.c | 
|  | 79 | \( 1 + 3 T + p T^{2} \) | 1.79.d | 
|  | 83 | \( 1 + 6 T + p T^{2} \) | 1.83.g | 
|  | 89 | \( 1 - T + p T^{2} \) | 1.89.ab | 
|  | 97 | \( 1 - 10 T + p T^{2} \) | 1.97.ak | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.93086130766029, −14.72138869599469, −14.31813106778771, −13.85856244008422, −13.03829782618918, −12.61363708154056, −11.99593529395599, −11.64441102367687, −11.04980788156674, −10.36567233030288, −9.872624476426862, −9.313196191983663, −8.685381765183468, −8.052161906200756, −7.937668699241755, −7.040006137199564, −6.584303972492479, −5.962138180606221, −4.996744405395888, −4.433093085293741, −4.180987921897275, −3.241517163814125, −2.568898207843407, −1.893369268057414, −1.133693012149487, 0, 
1.133693012149487, 1.893369268057414, 2.568898207843407, 3.241517163814125, 4.180987921897275, 4.433093085293741, 4.996744405395888, 5.962138180606221, 6.584303972492479, 7.040006137199564, 7.937668699241755, 8.052161906200756, 8.685381765183468, 9.313196191983663, 9.872624476426862, 10.36567233030288, 11.04980788156674, 11.64441102367687, 11.99593529395599, 12.61363708154056, 13.03829782618918, 13.85856244008422, 14.31813106778771, 14.72138869599469, 14.93086130766029
