Properties

Label 2-34680-1.1-c1-0-42
Degree $2$
Conductor $34680$
Sign $-1$
Analytic cond. $276.921$
Root an. cond. $16.6409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 2·7-s + 9-s + 3·11-s − 4·13-s − 15-s − 5·19-s + 2·21-s − 4·23-s + 25-s + 27-s + 9·29-s + 3·33-s − 2·35-s + 6·37-s − 4·39-s + 5·41-s − 2·43-s − 45-s − 10·47-s − 3·49-s − 2·53-s − 3·55-s − 5·57-s − 7·59-s + 9·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 0.755·7-s + 1/3·9-s + 0.904·11-s − 1.10·13-s − 0.258·15-s − 1.14·19-s + 0.436·21-s − 0.834·23-s + 1/5·25-s + 0.192·27-s + 1.67·29-s + 0.522·33-s − 0.338·35-s + 0.986·37-s − 0.640·39-s + 0.780·41-s − 0.304·43-s − 0.149·45-s − 1.45·47-s − 3/7·49-s − 0.274·53-s − 0.404·55-s − 0.662·57-s − 0.911·59-s + 1.15·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34680\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(276.921\)
Root analytic conductor: \(16.6409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 34680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
17 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 - 9 T + p T^{2} \) 1.61.aj
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.93086130766029, −14.72138869599469, −14.31813106778771, −13.85856244008422, −13.03829782618918, −12.61363708154056, −11.99593529395599, −11.64441102367687, −11.04980788156674, −10.36567233030288, −9.872624476426862, −9.313196191983663, −8.685381765183468, −8.052161906200756, −7.937668699241755, −7.040006137199564, −6.584303972492479, −5.962138180606221, −4.996744405395888, −4.433093085293741, −4.180987921897275, −3.241517163814125, −2.568898207843407, −1.893369268057414, −1.133693012149487, 0, 1.133693012149487, 1.893369268057414, 2.568898207843407, 3.241517163814125, 4.180987921897275, 4.433093085293741, 4.996744405395888, 5.962138180606221, 6.584303972492479, 7.040006137199564, 7.937668699241755, 8.052161906200756, 8.685381765183468, 9.313196191983663, 9.872624476426862, 10.36567233030288, 11.04980788156674, 11.64441102367687, 11.99593529395599, 12.61363708154056, 13.03829782618918, 13.85856244008422, 14.31813106778771, 14.72138869599469, 14.93086130766029

Graph of the $Z$-function along the critical line