Properties

Label 2-34680-1.1-c1-0-32
Degree $2$
Conductor $34680$
Sign $-1$
Analytic cond. $276.921$
Root an. cond. $16.6409$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 4·7-s + 9-s + 4·11-s − 4·13-s − 15-s − 4·21-s + 2·23-s + 25-s + 27-s − 2·29-s − 6·31-s + 4·33-s + 4·35-s + 2·37-s − 4·39-s + 10·41-s − 2·43-s − 45-s + 9·49-s + 6·53-s − 4·55-s − 10·59-s − 10·61-s − 4·63-s + 4·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.20·11-s − 1.10·13-s − 0.258·15-s − 0.872·21-s + 0.417·23-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 1.07·31-s + 0.696·33-s + 0.676·35-s + 0.328·37-s − 0.640·39-s + 1.56·41-s − 0.304·43-s − 0.149·45-s + 9/7·49-s + 0.824·53-s − 0.539·55-s − 1.30·59-s − 1.28·61-s − 0.503·63-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34680\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(276.921\)
Root analytic conductor: \(16.6409\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 34680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.16592898418075, −14.75472831704718, −14.21107619532493, −13.69580671901936, −13.03872719700187, −12.55359740544316, −12.27512847929913, −11.63480855045934, −10.92646561872520, −10.40825001198182, −9.552158078738115, −9.394822654657739, −9.053116123507393, −8.194053005911676, −7.492660054359167, −7.131649206297823, −6.537746428198908, −6.023847442868681, −5.213478780625301, −4.389127680750349, −3.866159731465265, −3.307604286232078, −2.731561569111934, −1.967846079270709, −0.9236167939601515, 0, 0.9236167939601515, 1.967846079270709, 2.731561569111934, 3.307604286232078, 3.866159731465265, 4.389127680750349, 5.213478780625301, 6.023847442868681, 6.537746428198908, 7.131649206297823, 7.492660054359167, 8.194053005911676, 9.053116123507393, 9.394822654657739, 9.552158078738115, 10.40825001198182, 10.92646561872520, 11.63480855045934, 12.27512847929913, 12.55359740544316, 13.03872719700187, 13.69580671901936, 14.21107619532493, 14.75472831704718, 15.16592898418075

Graph of the $Z$-function along the critical line