| L(s)  = 1 | + 3-s     − 5-s     − 4·7-s     + 9-s     + 4·11-s     − 4·13-s     − 15-s             − 4·21-s     + 2·23-s     + 25-s     + 27-s     − 2·29-s     − 6·31-s     + 4·33-s     + 4·35-s     + 2·37-s     − 4·39-s     + 10·41-s     − 2·43-s     − 45-s         + 9·49-s         + 6·53-s     − 4·55-s         − 10·59-s     − 10·61-s     − 4·63-s     + 4·65-s  + ⋯ | 
| L(s)  = 1 | + 0.577·3-s     − 0.447·5-s     − 1.51·7-s     + 1/3·9-s     + 1.20·11-s     − 1.10·13-s     − 0.258·15-s             − 0.872·21-s     + 0.417·23-s     + 1/5·25-s     + 0.192·27-s     − 0.371·29-s     − 1.07·31-s     + 0.696·33-s     + 0.676·35-s     + 0.328·37-s     − 0.640·39-s     + 1.56·41-s     − 0.304·43-s     − 0.149·45-s         + 9/7·49-s         + 0.824·53-s     − 0.539·55-s         − 1.30·59-s     − 1.28·61-s     − 0.503·63-s     + 0.496·65-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 34680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 - T \) |  | 
|  | 5 | \( 1 + T \) |  | 
|  | 17 | \( 1 \) |  | 
| good | 7 | \( 1 + 4 T + p T^{2} \) | 1.7.e | 
|  | 11 | \( 1 - 4 T + p T^{2} \) | 1.11.ae | 
|  | 13 | \( 1 + 4 T + p T^{2} \) | 1.13.e | 
|  | 19 | \( 1 + p T^{2} \) | 1.19.a | 
|  | 23 | \( 1 - 2 T + p T^{2} \) | 1.23.ac | 
|  | 29 | \( 1 + 2 T + p T^{2} \) | 1.29.c | 
|  | 31 | \( 1 + 6 T + p T^{2} \) | 1.31.g | 
|  | 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac | 
|  | 41 | \( 1 - 10 T + p T^{2} \) | 1.41.ak | 
|  | 43 | \( 1 + 2 T + p T^{2} \) | 1.43.c | 
|  | 47 | \( 1 + p T^{2} \) | 1.47.a | 
|  | 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag | 
|  | 59 | \( 1 + 10 T + p T^{2} \) | 1.59.k | 
|  | 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k | 
|  | 67 | \( 1 - 10 T + p T^{2} \) | 1.67.ak | 
|  | 71 | \( 1 + 8 T + p T^{2} \) | 1.71.i | 
|  | 73 | \( 1 - 6 T + p T^{2} \) | 1.73.ag | 
|  | 79 | \( 1 - 14 T + p T^{2} \) | 1.79.ao | 
|  | 83 | \( 1 - 4 T + p T^{2} \) | 1.83.ae | 
|  | 89 | \( 1 - 6 T + p T^{2} \) | 1.89.ag | 
|  | 97 | \( 1 + 18 T + p T^{2} \) | 1.97.s | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−15.16592898418075, −14.75472831704718, −14.21107619532493, −13.69580671901936, −13.03872719700187, −12.55359740544316, −12.27512847929913, −11.63480855045934, −10.92646561872520, −10.40825001198182, −9.552158078738115, −9.394822654657739, −9.053116123507393, −8.194053005911676, −7.492660054359167, −7.131649206297823, −6.537746428198908, −6.023847442868681, −5.213478780625301, −4.389127680750349, −3.866159731465265, −3.307604286232078, −2.731561569111934, −1.967846079270709, −0.9236167939601515, 0, 
0.9236167939601515, 1.967846079270709, 2.731561569111934, 3.307604286232078, 3.866159731465265, 4.389127680750349, 5.213478780625301, 6.023847442868681, 6.537746428198908, 7.131649206297823, 7.492660054359167, 8.194053005911676, 9.053116123507393, 9.394822654657739, 9.552158078738115, 10.40825001198182, 10.92646561872520, 11.63480855045934, 12.27512847929913, 12.55359740544316, 13.03872719700187, 13.69580671901936, 14.21107619532493, 14.75472831704718, 15.16592898418075
