Properties

Label 2-346560-1.1-c1-0-16
Degree $2$
Conductor $346560$
Sign $1$
Analytic cond. $2767.29$
Root an. cond. $52.6050$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s − 3·7-s + 9-s + 4·11-s − 5·13-s + 15-s + 3·21-s − 2·23-s + 25-s − 27-s − 8·29-s − 7·31-s − 4·33-s + 3·35-s − 7·37-s + 5·39-s − 3·43-s − 45-s + 6·47-s + 2·49-s + 2·53-s − 4·55-s + 61-s − 3·63-s + 5·65-s + 13·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 1.13·7-s + 1/3·9-s + 1.20·11-s − 1.38·13-s + 0.258·15-s + 0.654·21-s − 0.417·23-s + 1/5·25-s − 0.192·27-s − 1.48·29-s − 1.25·31-s − 0.696·33-s + 0.507·35-s − 1.15·37-s + 0.800·39-s − 0.457·43-s − 0.149·45-s + 0.875·47-s + 2/7·49-s + 0.274·53-s − 0.539·55-s + 0.128·61-s − 0.377·63-s + 0.620·65-s + 1.58·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 346560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 346560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(346560\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2767.29\)
Root analytic conductor: \(52.6050\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 346560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4034300983\)
\(L(\frac12)\) \(\approx\) \(0.4034300983\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
19 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.51664990772377, −12.18503783574070, −11.67288922213763, −11.29489049742505, −10.81808243438139, −10.16998633909102, −9.896651979826937, −9.336898020903225, −9.110770318608718, −8.549853812572497, −7.757372398631563, −7.380972972229436, −6.953308355974931, −6.618802436010817, −6.071533323543981, −5.489364631581233, −5.155615000828777, −4.448903787741572, −3.906150540035188, −3.569926113598270, −3.073899271802217, −2.153756538034021, −1.851184215683537, −0.9022736463602779, −0.2045672449358928, 0.2045672449358928, 0.9022736463602779, 1.851184215683537, 2.153756538034021, 3.073899271802217, 3.569926113598270, 3.906150540035188, 4.448903787741572, 5.155615000828777, 5.489364631581233, 6.071533323543981, 6.618802436010817, 6.953308355974931, 7.380972972229436, 7.757372398631563, 8.549853812572497, 9.110770318608718, 9.336898020903225, 9.896651979826937, 10.16998633909102, 10.81808243438139, 11.29489049742505, 11.67288922213763, 12.18503783574070, 12.51664990772377

Graph of the $Z$-function along the critical line