Properties

Label 2-34650-1.1-c1-0-59
Degree $2$
Conductor $34650$
Sign $-1$
Analytic cond. $276.681$
Root an. cond. $16.6337$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s + 11-s − 2·13-s + 14-s + 16-s − 6·17-s − 4·19-s − 22-s + 2·26-s − 28-s + 6·29-s − 4·31-s − 32-s + 6·34-s − 2·37-s + 4·38-s + 6·41-s + 4·43-s + 44-s + 49-s − 2·52-s − 6·53-s + 56-s − 6·58-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s + 0.301·11-s − 0.554·13-s + 0.267·14-s + 1/4·16-s − 1.45·17-s − 0.917·19-s − 0.213·22-s + 0.392·26-s − 0.188·28-s + 1.11·29-s − 0.718·31-s − 0.176·32-s + 1.02·34-s − 0.328·37-s + 0.648·38-s + 0.937·41-s + 0.609·43-s + 0.150·44-s + 1/7·49-s − 0.277·52-s − 0.824·53-s + 0.133·56-s − 0.787·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(276.681\)
Root analytic conductor: \(16.6337\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 34650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 - T \)
good13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 - 16 T + p T^{2} \) 1.67.aq
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.45332092037252, −14.56623618261216, −14.44185404919445, −13.60944822985777, −13.01065333333972, −12.56227540417428, −12.09160221568897, −11.33439788822069, −10.94627978323779, −10.46445255589365, −9.792936316418154, −9.330509590667722, −8.797841044333516, −8.355904455766881, −7.652503152587784, −7.032362131761644, −6.530158329971293, −6.136995958090974, −5.266863095657642, −4.538349514138089, −4.004908310586306, −3.143982266618892, −2.378912321187591, −1.934805910472861, −0.8290224835746324, 0, 0.8290224835746324, 1.934805910472861, 2.378912321187591, 3.143982266618892, 4.004908310586306, 4.538349514138089, 5.266863095657642, 6.136995958090974, 6.530158329971293, 7.032362131761644, 7.652503152587784, 8.355904455766881, 8.797841044333516, 9.330509590667722, 9.792936316418154, 10.46445255589365, 10.94627978323779, 11.33439788822069, 12.09160221568897, 12.56227540417428, 13.01065333333972, 13.60944822985777, 14.44185404919445, 14.56623618261216, 15.45332092037252

Graph of the $Z$-function along the critical line