Properties

Label 2-34496-1.1-c1-0-47
Degree $2$
Conductor $34496$
Sign $-1$
Analytic cond. $275.451$
Root an. cond. $16.5967$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·9-s − 11-s + 5·13-s − 6·17-s − 2·19-s − 6·23-s − 5·25-s + 5·27-s − 3·29-s + 8·31-s + 33-s − 2·37-s − 5·39-s + 6·41-s − 4·43-s + 6·47-s + 6·51-s + 12·53-s + 2·57-s + 3·59-s − 7·61-s − 13·67-s + 6·69-s + 12·71-s + 10·73-s + 5·75-s + ⋯
L(s)  = 1  − 0.577·3-s − 2/3·9-s − 0.301·11-s + 1.38·13-s − 1.45·17-s − 0.458·19-s − 1.25·23-s − 25-s + 0.962·27-s − 0.557·29-s + 1.43·31-s + 0.174·33-s − 0.328·37-s − 0.800·39-s + 0.937·41-s − 0.609·43-s + 0.875·47-s + 0.840·51-s + 1.64·53-s + 0.264·57-s + 0.390·59-s − 0.896·61-s − 1.58·67-s + 0.722·69-s + 1.42·71-s + 1.17·73-s + 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 34496 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 34496 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(34496\)    =    \(2^{6} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(275.451\)
Root analytic conductor: \(16.5967\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 34496,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.38724124372848, −14.78770159886908, −13.94337774658799, −13.63902672033866, −13.31440150976934, −12.50207864524100, −11.97447787823821, −11.49691836845296, −11.02388467570366, −10.58558888010850, −10.05179211066238, −9.255810997901632, −8.702134623721104, −8.294902164580099, −7.747500565144611, −6.845899913275679, −6.341993496321173, −5.885653756982321, −5.460884011491613, −4.480391650093529, −4.119358271195546, −3.363437308341866, −2.456373974972958, −1.931018867645466, −0.8259885723618745, 0, 0.8259885723618745, 1.931018867645466, 2.456373974972958, 3.363437308341866, 4.119358271195546, 4.480391650093529, 5.460884011491613, 5.885653756982321, 6.341993496321173, 6.845899913275679, 7.747500565144611, 8.294902164580099, 8.702134623721104, 9.255810997901632, 10.05179211066238, 10.58558888010850, 11.02388467570366, 11.49691836845296, 11.97447787823821, 12.50207864524100, 13.31440150976934, 13.63902672033866, 13.94337774658799, 14.78770159886908, 15.38724124372848

Graph of the $Z$-function along the critical line