Properties

Label 2-344850-1.1-c1-0-73
Degree $2$
Conductor $344850$
Sign $-1$
Analytic cond. $2753.64$
Root an. cond. $52.4751$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 2·7-s − 8-s + 9-s + 12-s − 6·13-s + 2·14-s + 16-s + 4·17-s − 18-s − 19-s − 2·21-s − 4·23-s − 24-s + 6·26-s + 27-s − 2·28-s − 6·29-s − 6·31-s − 32-s − 4·34-s + 36-s − 10·37-s + 38-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.288·12-s − 1.66·13-s + 0.534·14-s + 1/4·16-s + 0.970·17-s − 0.235·18-s − 0.229·19-s − 0.436·21-s − 0.834·23-s − 0.204·24-s + 1.17·26-s + 0.192·27-s − 0.377·28-s − 1.11·29-s − 1.07·31-s − 0.176·32-s − 0.685·34-s + 1/6·36-s − 1.64·37-s + 0.162·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 344850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 344850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(344850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 11^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(2753.64\)
Root analytic conductor: \(52.4751\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 344850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 \)
19 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77097477957858, −12.42647947977563, −11.78547458117515, −11.58042358896440, −10.78399171904960, −10.24957162988987, −10.00335784807130, −9.715300896996023, −9.002298552692774, −8.918788813517167, −8.222126744626458, −7.607647252431617, −7.351858133335790, −7.069917217902567, −6.397061771085216, −5.766004470430195, −5.420240609132418, −4.807431823802923, −4.071063616167268, −3.571727416108348, −3.158349937015404, −2.485220724225780, −2.052240961776301, −1.547399553557189, −0.5727584399569201, 0, 0.5727584399569201, 1.547399553557189, 2.052240961776301, 2.485220724225780, 3.158349937015404, 3.571727416108348, 4.071063616167268, 4.807431823802923, 5.420240609132418, 5.766004470430195, 6.397061771085216, 7.069917217902567, 7.351858133335790, 7.607647252431617, 8.222126744626458, 8.918788813517167, 9.002298552692774, 9.715300896996023, 10.00335784807130, 10.24957162988987, 10.78399171904960, 11.58042358896440, 11.78547458117515, 12.42647947977563, 12.77097477957858

Graph of the $Z$-function along the critical line