Properties

Label 2-338800-1.1-c1-0-78
Degree $2$
Conductor $338800$
Sign $-1$
Analytic cond. $2705.33$
Root an. cond. $52.0128$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 7-s + 9-s − 6·13-s + 2·17-s + 8·19-s + 2·21-s − 2·23-s + 4·27-s − 4·31-s − 6·37-s + 12·39-s − 12·41-s + 4·43-s − 6·47-s + 49-s − 4·51-s − 14·53-s − 16·57-s − 8·61-s − 63-s + 6·67-s + 4·69-s − 8·71-s + 2·73-s + 12·79-s − 11·81-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.377·7-s + 1/3·9-s − 1.66·13-s + 0.485·17-s + 1.83·19-s + 0.436·21-s − 0.417·23-s + 0.769·27-s − 0.718·31-s − 0.986·37-s + 1.92·39-s − 1.87·41-s + 0.609·43-s − 0.875·47-s + 1/7·49-s − 0.560·51-s − 1.92·53-s − 2.11·57-s − 1.02·61-s − 0.125·63-s + 0.733·67-s + 0.481·69-s − 0.949·71-s + 0.234·73-s + 1.35·79-s − 1.22·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338800\)    =    \(2^{4} \cdot 5^{2} \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2705.33\)
Root analytic conductor: \(52.0128\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46374568172881, −12.27953251493660, −11.96132815128410, −11.59345684783210, −10.95783139131228, −10.65790660756656, −9.960220819723958, −9.758607017994124, −9.404600573152038, −8.731493945136480, −8.109942654338218, −7.478659871575479, −7.373407909375796, −6.621798402999788, −6.376065512856133, −5.642396772538724, −5.235602488658775, −5.019802404195019, −4.515143911083056, −3.606002151804172, −3.226276114012088, −2.733857250185117, −1.889947720458155, −1.368770831447063, −0.5142744417660891, 0, 0.5142744417660891, 1.368770831447063, 1.889947720458155, 2.733857250185117, 3.226276114012088, 3.606002151804172, 4.515143911083056, 5.019802404195019, 5.235602488658775, 5.642396772538724, 6.376065512856133, 6.621798402999788, 7.373407909375796, 7.478659871575479, 8.109942654338218, 8.731493945136480, 9.404600573152038, 9.758607017994124, 9.960220819723958, 10.65790660756656, 10.95783139131228, 11.59345684783210, 11.96132815128410, 12.27953251493660, 12.46374568172881

Graph of the $Z$-function along the critical line