Properties

Label 2-338800-1.1-c1-0-90
Degree $2$
Conductor $338800$
Sign $-1$
Analytic cond. $2705.33$
Root an. cond. $52.0128$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 7-s + 9-s − 13-s − 19-s + 2·21-s − 9·23-s + 4·27-s + 3·29-s − 5·31-s + 4·37-s + 2·39-s + 43-s + 49-s + 6·53-s + 2·57-s − 2·61-s − 63-s + 2·67-s + 18·69-s + 9·71-s − 4·73-s − 4·79-s − 11·81-s + 9·83-s − 6·87-s + 15·89-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.377·7-s + 1/3·9-s − 0.277·13-s − 0.229·19-s + 0.436·21-s − 1.87·23-s + 0.769·27-s + 0.557·29-s − 0.898·31-s + 0.657·37-s + 0.320·39-s + 0.152·43-s + 1/7·49-s + 0.824·53-s + 0.264·57-s − 0.256·61-s − 0.125·63-s + 0.244·67-s + 2.16·69-s + 1.06·71-s − 0.468·73-s − 0.450·79-s − 1.22·81-s + 0.987·83-s − 0.643·87-s + 1.58·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338800\)    =    \(2^{4} \cdot 5^{2} \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(2705.33\)
Root analytic conductor: \(52.0128\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.64232308389176, −12.17709015576505, −11.97944181417337, −11.53540645086241, −10.93608511839265, −10.61226351234484, −10.20627166833187, −9.666011895643594, −9.326327151902283, −8.650136403149516, −8.169434237194125, −7.751650355570402, −7.079424503649335, −6.730486300569527, −6.147132297413177, −5.812944758411519, −5.489601906803911, −4.707851976178425, −4.477158318165978, −3.728164346382606, −3.339043765873127, −2.427834852690062, −2.139323643478708, −1.254435200031817, −0.5729312749207969, 0, 0.5729312749207969, 1.254435200031817, 2.139323643478708, 2.427834852690062, 3.339043765873127, 3.728164346382606, 4.477158318165978, 4.707851976178425, 5.489601906803911, 5.812944758411519, 6.147132297413177, 6.730486300569527, 7.079424503649335, 7.751650355570402, 8.169434237194125, 8.650136403149516, 9.326327151902283, 9.666011895643594, 10.20627166833187, 10.61226351234484, 10.93608511839265, 11.53540645086241, 11.97944181417337, 12.17709015576505, 12.64232308389176

Graph of the $Z$-function along the critical line