Properties

Label 2-338130-1.1-c1-0-75
Degree $2$
Conductor $338130$
Sign $-1$
Analytic cond. $2699.98$
Root an. cond. $51.9613$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 4·7-s + 8-s − 10-s − 13-s − 4·14-s + 16-s + 4·19-s − 20-s + 8·23-s + 25-s − 26-s − 4·28-s + 2·29-s + 8·31-s + 32-s + 4·35-s − 2·37-s + 4·38-s − 40-s − 6·41-s + 12·43-s + 8·46-s + 9·49-s + 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 1.51·7-s + 0.353·8-s − 0.316·10-s − 0.277·13-s − 1.06·14-s + 1/4·16-s + 0.917·19-s − 0.223·20-s + 1.66·23-s + 1/5·25-s − 0.196·26-s − 0.755·28-s + 0.371·29-s + 1.43·31-s + 0.176·32-s + 0.676·35-s − 0.328·37-s + 0.648·38-s − 0.158·40-s − 0.937·41-s + 1.82·43-s + 1.17·46-s + 9/7·49-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 338130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 338130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(338130\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2699.98\)
Root analytic conductor: \(51.9613\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 338130,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.83040729314453, −12.35498981533610, −11.96891038146916, −11.69510650501771, −10.96146090444026, −10.61721279196932, −10.14804503414055, −9.606365709014304, −9.197058994671664, −8.851877579536835, −7.966936545262967, −7.769980462239521, −7.012957247692996, −6.712197547130596, −6.453616390463429, −5.680881934228606, −5.344974108238625, −4.686551837525394, −4.332728410006949, −3.539465472368203, −3.287117431951712, −2.773509016339646, −2.396330167084368, −1.292152375094565, −0.8280763793443204, 0, 0.8280763793443204, 1.292152375094565, 2.396330167084368, 2.773509016339646, 3.287117431951712, 3.539465472368203, 4.332728410006949, 4.686551837525394, 5.344974108238625, 5.680881934228606, 6.453616390463429, 6.712197547130596, 7.012957247692996, 7.769980462239521, 7.966936545262967, 8.851877579536835, 9.197058994671664, 9.606365709014304, 10.14804503414055, 10.61721279196932, 10.96146090444026, 11.69510650501771, 11.96891038146916, 12.35498981533610, 12.83040729314453

Graph of the $Z$-function along the critical line