Properties

Label 2-337896-1.1-c1-0-23
Degree $2$
Conductor $337896$
Sign $1$
Analytic cond. $2698.11$
Root an. cond. $51.9433$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 5·11-s + 13-s + 6·17-s + 4·23-s − 5·25-s − 4·29-s + 6·31-s − 4·37-s + 11·41-s + 12·43-s + 10·47-s − 3·49-s + 12·53-s + 11·59-s − 2·61-s + 3·67-s + 6·71-s − 3·73-s − 10·77-s − 2·79-s + 9·83-s − 10·89-s − 2·91-s − 7·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 0.755·7-s + 1.50·11-s + 0.277·13-s + 1.45·17-s + 0.834·23-s − 25-s − 0.742·29-s + 1.07·31-s − 0.657·37-s + 1.71·41-s + 1.82·43-s + 1.45·47-s − 3/7·49-s + 1.64·53-s + 1.43·59-s − 0.256·61-s + 0.366·67-s + 0.712·71-s − 0.351·73-s − 1.13·77-s − 0.225·79-s + 0.987·83-s − 1.05·89-s − 0.209·91-s − 0.710·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 337896 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 337896 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(337896\)    =    \(2^{3} \cdot 3^{2} \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2698.11\)
Root analytic conductor: \(51.9433\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 337896,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.127761386\)
\(L(\frac12)\) \(\approx\) \(4.127761386\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.46839091365008, −12.16848072637222, −11.78468787546329, −11.19420406410136, −10.86176450853579, −10.18884703746848, −9.790914295578426, −9.413461461125137, −9.007041863331929, −8.591348940596304, −7.884290056823513, −7.488767379822340, −6.977641051281692, −6.583921103816665, −5.889929935231920, −5.751280822734256, −5.180381286648458, −4.229829701874666, −3.975289358445905, −3.620483304876198, −2.882464916789614, −2.456167284375521, −1.635065012713359, −0.9411569463751097, −0.6742575083924847, 0.6742575083924847, 0.9411569463751097, 1.635065012713359, 2.456167284375521, 2.882464916789614, 3.620483304876198, 3.975289358445905, 4.229829701874666, 5.180381286648458, 5.751280822734256, 5.889929935231920, 6.583921103816665, 6.977641051281692, 7.488767379822340, 7.884290056823513, 8.591348940596304, 9.007041863331929, 9.413461461125137, 9.790914295578426, 10.18884703746848, 10.86176450853579, 11.19420406410136, 11.78468787546329, 12.16848072637222, 12.46839091365008

Graph of the $Z$-function along the critical line