Properties

Label 2-336600-1.1-c1-0-21
Degree $2$
Conductor $336600$
Sign $1$
Analytic cond. $2687.76$
Root an. cond. $51.8436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 11-s + 2·13-s + 17-s − 2·29-s + 4·31-s + 6·37-s − 6·41-s − 4·43-s + 9·49-s + 10·53-s + 12·59-s + 2·61-s − 8·67-s − 4·71-s + 6·73-s + 4·77-s − 8·79-s − 4·83-s − 10·89-s − 8·91-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.51·7-s − 0.301·11-s + 0.554·13-s + 0.242·17-s − 0.371·29-s + 0.718·31-s + 0.986·37-s − 0.937·41-s − 0.609·43-s + 9/7·49-s + 1.37·53-s + 1.56·59-s + 0.256·61-s − 0.977·67-s − 0.474·71-s + 0.702·73-s + 0.455·77-s − 0.900·79-s − 0.439·83-s − 1.05·89-s − 0.838·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336600\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 17\)
Sign: $1$
Analytic conductor: \(2687.76\)
Root analytic conductor: \(51.8436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 336600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.634212072\)
\(L(\frac12)\) \(\approx\) \(1.634212072\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.65751529691689, −12.06722538508247, −11.82885608463217, −11.18898200211522, −10.75207430180327, −10.12049188769839, −9.928267168531774, −9.526131990187304, −8.922839132886284, −8.427086609897459, −8.156604067521447, −7.283580924040510, −7.063750047706985, −6.544276512880929, −5.977639826137052, −5.731231261938825, −5.107907885192286, −4.426525469149808, −3.918594290994949, −3.421456760655966, −2.956376570464921, −2.477140191153270, −1.758879656988030, −0.9590655710815847, −0.3887298244277090, 0.3887298244277090, 0.9590655710815847, 1.758879656988030, 2.477140191153270, 2.956376570464921, 3.421456760655966, 3.918594290994949, 4.426525469149808, 5.107907885192286, 5.731231261938825, 5.977639826137052, 6.544276512880929, 7.063750047706985, 7.283580924040510, 8.156604067521447, 8.427086609897459, 8.922839132886284, 9.526131990187304, 9.928267168531774, 10.12049188769839, 10.75207430180327, 11.18898200211522, 11.82885608463217, 12.06722538508247, 12.65751529691689

Graph of the $Z$-function along the critical line