Properties

Label 2-336600-1.1-c1-0-94
Degree $2$
Conductor $336600$
Sign $-1$
Analytic cond. $2687.76$
Root an. cond. $51.8436$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 11-s − 17-s + 2·19-s + 2·23-s − 10·29-s + 8·31-s + 6·37-s − 2·41-s − 2·43-s − 3·49-s − 12·53-s − 10·59-s + 10·61-s + 4·67-s − 6·71-s + 2·77-s − 10·79-s − 4·83-s + 10·89-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 2·119-s + ⋯
L(s)  = 1  + 0.755·7-s + 0.301·11-s − 0.242·17-s + 0.458·19-s + 0.417·23-s − 1.85·29-s + 1.43·31-s + 0.986·37-s − 0.312·41-s − 0.304·43-s − 3/7·49-s − 1.64·53-s − 1.30·59-s + 1.28·61-s + 0.488·67-s − 0.712·71-s + 0.227·77-s − 1.12·79-s − 0.439·83-s + 1.05·89-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 0.183·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(336600\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 17\)
Sign: $-1$
Analytic conductor: \(2687.76\)
Root analytic conductor: \(51.8436\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 336600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
17 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.84474859416712, −12.29842503986774, −11.84132566481739, −11.31718082292550, −11.18624587428728, −10.65656807965656, −9.994032089213889, −9.578934876230047, −9.278623915649089, −8.561362404118397, −8.296393082695568, −7.693615252382850, −7.372243306598685, −6.815502203217080, −6.208674634179963, −5.862816419599139, −5.240665068936117, −4.608405626998259, −4.531201308317647, −3.644906630828560, −3.264544341644602, −2.600107560057033, −1.950496284145432, −1.465446559839216, −0.8451469625936646, 0, 0.8451469625936646, 1.465446559839216, 1.950496284145432, 2.600107560057033, 3.264544341644602, 3.644906630828560, 4.531201308317647, 4.608405626998259, 5.240665068936117, 5.862816419599139, 6.208674634179963, 6.815502203217080, 7.372243306598685, 7.693615252382850, 8.296393082695568, 8.561362404118397, 9.278623915649089, 9.578934876230047, 9.994032089213889, 10.65656807965656, 11.18624587428728, 11.31718082292550, 11.84132566481739, 12.29842503986774, 12.84474859416712

Graph of the $Z$-function along the critical line