Properties

Label 2-333200-1.1-c1-0-11
Degree $2$
Conductor $333200$
Sign $1$
Analytic cond. $2660.61$
Root an. cond. $51.5811$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s + 2·11-s − 6·13-s + 17-s − 8·19-s − 2·23-s − 4·27-s + 6·29-s − 2·31-s + 4·33-s − 6·37-s − 12·39-s − 2·41-s − 4·43-s − 4·47-s + 2·51-s + 10·53-s − 16·57-s + 10·61-s + 8·67-s − 4·69-s − 14·71-s + 10·73-s + 14·79-s − 11·81-s + 4·83-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s + 0.603·11-s − 1.66·13-s + 0.242·17-s − 1.83·19-s − 0.417·23-s − 0.769·27-s + 1.11·29-s − 0.359·31-s + 0.696·33-s − 0.986·37-s − 1.92·39-s − 0.312·41-s − 0.609·43-s − 0.583·47-s + 0.280·51-s + 1.37·53-s − 2.11·57-s + 1.28·61-s + 0.977·67-s − 0.481·69-s − 1.66·71-s + 1.17·73-s + 1.57·79-s − 1.22·81-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 333200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 333200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(333200\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2660.61\)
Root analytic conductor: \(51.5811\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 333200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.366083368\)
\(L(\frac12)\) \(\approx\) \(1.366083368\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.52016705443524, −12.16974243563317, −11.90664043170505, −11.20409116768669, −10.69795315015382, −10.12019534128343, −9.871970885344010, −9.374516781239867, −8.836498310595432, −8.458063140613392, −8.140008599437484, −7.626257648548887, −6.958499411685375, −6.741066923797094, −6.189361600710148, −5.377375627734027, −5.068001796704064, −4.353904728626786, −3.957062003123180, −3.469516810173619, −2.802677755151505, −2.283285042112391, −2.056047262490559, −1.266443309835458, −0.2657414545036209, 0.2657414545036209, 1.266443309835458, 2.056047262490559, 2.283285042112391, 2.802677755151505, 3.469516810173619, 3.957062003123180, 4.353904728626786, 5.068001796704064, 5.377375627734027, 6.189361600710148, 6.741066923797094, 6.958499411685375, 7.626257648548887, 8.140008599437484, 8.458063140613392, 8.836498310595432, 9.374516781239867, 9.871970885344010, 10.12019534128343, 10.69795315015382, 11.20409116768669, 11.90664043170505, 12.16974243563317, 12.52016705443524

Graph of the $Z$-function along the critical line