Properties

Label 2-3312-1.1-c1-0-41
Degree $2$
Conductor $3312$
Sign $-1$
Analytic cond. $26.4464$
Root an. cond. $5.14261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·7-s − 4·11-s − 2·13-s + 2·17-s + 23-s − 25-s + 2·29-s − 8·35-s − 10·37-s + 6·41-s − 8·43-s − 8·47-s + 9·49-s + 6·53-s + 8·55-s − 4·59-s + 14·61-s + 4·65-s − 8·67-s − 8·71-s − 6·73-s − 16·77-s − 12·79-s − 12·83-s − 4·85-s + 2·89-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.51·7-s − 1.20·11-s − 0.554·13-s + 0.485·17-s + 0.208·23-s − 1/5·25-s + 0.371·29-s − 1.35·35-s − 1.64·37-s + 0.937·41-s − 1.21·43-s − 1.16·47-s + 9/7·49-s + 0.824·53-s + 1.07·55-s − 0.520·59-s + 1.79·61-s + 0.496·65-s − 0.977·67-s − 0.949·71-s − 0.702·73-s − 1.82·77-s − 1.35·79-s − 1.31·83-s − 0.433·85-s + 0.211·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3312\)    =    \(2^{4} \cdot 3^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(26.4464\)
Root analytic conductor: \(5.14261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.327781090606475870382342337557, −7.50699486492617514936997772257, −7.17107479898425035723239787460, −5.78526871530178298138769664606, −5.04108692830443101591689388038, −4.56422440393451236797823788719, −3.54192240000087360659655825677, −2.53706594040917035071504886832, −1.48200439795152071424990934394, 0, 1.48200439795152071424990934394, 2.53706594040917035071504886832, 3.54192240000087360659655825677, 4.56422440393451236797823788719, 5.04108692830443101591689388038, 5.78526871530178298138769664606, 7.17107479898425035723239787460, 7.50699486492617514936997772257, 8.327781090606475870382342337557

Graph of the $Z$-function along the critical line