Properties

Label 2-327600-1.1-c1-0-83
Degree $2$
Conductor $327600$
Sign $1$
Analytic cond. $2615.89$
Root an. cond. $51.1458$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 5·11-s − 13-s + 4·17-s + 8·19-s − 5·23-s + 29-s + 8·31-s + 3·37-s + 2·41-s + 43-s + 49-s + 6·53-s + 2·59-s − 8·61-s + 5·67-s − 13·71-s − 4·73-s + 5·77-s + 7·79-s − 2·83-s + 91-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.377·7-s − 1.50·11-s − 0.277·13-s + 0.970·17-s + 1.83·19-s − 1.04·23-s + 0.185·29-s + 1.43·31-s + 0.493·37-s + 0.312·41-s + 0.152·43-s + 1/7·49-s + 0.824·53-s + 0.260·59-s − 1.02·61-s + 0.610·67-s − 1.54·71-s − 0.468·73-s + 0.569·77-s + 0.787·79-s − 0.219·83-s + 0.104·91-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327600\)    =    \(2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(2615.89\)
Root analytic conductor: \(51.1458\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 327600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.150221430\)
\(L(\frac12)\) \(\approx\) \(2.150221430\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.42967541949675, −12.16902164214118, −11.86026018411622, −11.26721544015388, −10.69760046991976, −10.21915496982054, −9.894356664040884, −9.617320454705739, −9.007136792356862, −8.262865377601053, −8.010621173570957, −7.524200701111231, −7.234834663539804, −6.508803135113525, −5.954411642886134, −5.469794810310725, −5.246822651208684, −4.520518517500607, −4.067193765871478, −3.266027021227350, −2.908791230022281, −2.552717201278863, −1.734143921147086, −0.9947258068998925, −0.4402725266122535, 0.4402725266122535, 0.9947258068998925, 1.734143921147086, 2.552717201278863, 2.908791230022281, 3.266027021227350, 4.067193765871478, 4.520518517500607, 5.246822651208684, 5.469794810310725, 5.954411642886134, 6.508803135113525, 7.234834663539804, 7.524200701111231, 8.010621173570957, 8.262865377601053, 9.007136792356862, 9.617320454705739, 9.894356664040884, 10.21915496982054, 10.69760046991976, 11.26721544015388, 11.86026018411622, 12.16902164214118, 12.42967541949675

Graph of the $Z$-function along the critical line