Properties

Label 2-32490-1.1-c1-0-3
Degree $2$
Conductor $32490$
Sign $1$
Analytic cond. $259.433$
Root an. cond. $16.1069$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s − 2·7-s + 8-s − 10-s − 2·11-s − 4·13-s − 2·14-s + 16-s + 2·17-s − 20-s − 2·22-s − 4·23-s + 25-s − 4·26-s − 2·28-s + 8·31-s + 32-s + 2·34-s + 2·35-s − 8·37-s − 40-s − 8·41-s − 6·43-s − 2·44-s − 4·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.755·7-s + 0.353·8-s − 0.316·10-s − 0.603·11-s − 1.10·13-s − 0.534·14-s + 1/4·16-s + 0.485·17-s − 0.223·20-s − 0.426·22-s − 0.834·23-s + 1/5·25-s − 0.784·26-s − 0.377·28-s + 1.43·31-s + 0.176·32-s + 0.342·34-s + 0.338·35-s − 1.31·37-s − 0.158·40-s − 1.24·41-s − 0.914·43-s − 0.301·44-s − 0.589·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 32490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 32490 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(32490\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(259.433\)
Root analytic conductor: \(16.1069\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 32490,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.483492797\)
\(L(\frac12)\) \(\approx\) \(1.483492797\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
19 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.14991731757185, −14.44518416515092, −13.97505732228994, −13.44902921459128, −12.96877808099376, −12.21631812921665, −12.09164100082621, −11.62979309644650, −10.59299661276100, −10.39394564350825, −9.784599642996881, −9.241838461610411, −8.248665760588670, −8.031243339611061, −7.186421090035987, −6.842585332967279, −6.161235056206649, −5.484325880935126, −4.942037861531447, −4.368328078425023, −3.597683832872735, −3.058109216743145, −2.477670282305718, −1.620535079606976, −0.3907016936962984, 0.3907016936962984, 1.620535079606976, 2.477670282305718, 3.058109216743145, 3.597683832872735, 4.368328078425023, 4.942037861531447, 5.484325880935126, 6.161235056206649, 6.842585332967279, 7.186421090035987, 8.031243339611061, 8.248665760588670, 9.241838461610411, 9.784599642996881, 10.39394564350825, 10.59299661276100, 11.62979309644650, 12.09164100082621, 12.21631812921665, 12.96877808099376, 13.44902921459128, 13.97505732228994, 14.44518416515092, 15.14991731757185

Graph of the $Z$-function along the critical line