Properties

Label 2-323466-1.1-c1-0-72
Degree $2$
Conductor $323466$
Sign $-1$
Analytic cond. $2582.88$
Root an. cond. $50.8221$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 2·5-s + 6-s + 8-s + 9-s + 2·10-s − 11-s + 12-s + 2·15-s + 16-s − 2·17-s + 18-s + 4·19-s + 2·20-s − 22-s − 8·23-s + 24-s − 25-s + 27-s − 29-s + 2·30-s − 4·31-s + 32-s − 33-s − 2·34-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.894·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.632·10-s − 0.301·11-s + 0.288·12-s + 0.516·15-s + 1/4·16-s − 0.485·17-s + 0.235·18-s + 0.917·19-s + 0.447·20-s − 0.213·22-s − 1.66·23-s + 0.204·24-s − 1/5·25-s + 0.192·27-s − 0.185·29-s + 0.365·30-s − 0.718·31-s + 0.176·32-s − 0.174·33-s − 0.342·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 323466 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 323466 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(323466\)    =    \(2 \cdot 3 \cdot 11 \cdot 13^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(2582.88\)
Root analytic conductor: \(50.8221\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 323466,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 \)
29 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96208426445556, −12.46409325165679, −12.07312459327525, −11.55606224894733, −11.05068217515732, −10.54145313990348, −10.06386831011632, −9.719546051203529, −9.228464524662524, −8.815428881640069, −8.109925063203785, −7.717489142433105, −7.356920182287585, −6.647201890396732, −6.268680975701791, −5.743900555282216, −5.333208439204529, −4.876980868857160, −4.129677657940828, −3.793656383983707, −3.249277627728656, −2.522849811930406, −2.177480404187950, −1.730468086653961, −0.9917433764325134, 0, 0.9917433764325134, 1.730468086653961, 2.177480404187950, 2.522849811930406, 3.249277627728656, 3.793656383983707, 4.129677657940828, 4.876980868857160, 5.333208439204529, 5.743900555282216, 6.268680975701791, 6.647201890396732, 7.356920182287585, 7.717489142433105, 8.109925063203785, 8.815428881640069, 9.228464524662524, 9.719546051203529, 10.06386831011632, 10.54145313990348, 11.05068217515732, 11.55606224894733, 12.07312459327525, 12.46409325165679, 12.96208426445556

Graph of the $Z$-function along the critical line