Properties

Label 2-317400-1.1-c1-0-6
Degree $2$
Conductor $317400$
Sign $1$
Analytic cond. $2534.45$
Root an. cond. $50.3433$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s + 2·13-s − 2·17-s + 4·19-s + 4·21-s − 27-s − 2·29-s − 8·31-s + 2·37-s − 2·39-s + 10·41-s − 4·43-s + 9·49-s + 2·51-s + 6·53-s − 4·57-s + 12·59-s − 2·61-s − 4·63-s − 12·67-s − 16·71-s − 10·73-s + 4·79-s + 81-s + 2·87-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s + 0.554·13-s − 0.485·17-s + 0.917·19-s + 0.872·21-s − 0.192·27-s − 0.371·29-s − 1.43·31-s + 0.328·37-s − 0.320·39-s + 1.56·41-s − 0.609·43-s + 9/7·49-s + 0.280·51-s + 0.824·53-s − 0.529·57-s + 1.56·59-s − 0.256·61-s − 0.503·63-s − 1.46·67-s − 1.89·71-s − 1.17·73-s + 0.450·79-s + 1/9·81-s + 0.214·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 317400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 317400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(317400\)    =    \(2^{3} \cdot 3 \cdot 5^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(2534.45\)
Root analytic conductor: \(50.3433\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 317400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4834971059\)
\(L(\frac12)\) \(\approx\) \(0.4834971059\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
23 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72673812433141, −12.16154904870512, −11.73418912297915, −11.31170838587878, −10.76425830505191, −10.42031833771245, −9.864756357650455, −9.483792180387833, −9.028329536772274, −8.711754114196924, −7.891182244236306, −7.371237656094209, −7.035071998947284, −6.546629941607329, −6.004808701571733, −5.663643265080427, −5.282231724224303, −4.427337183930577, −3.990847262975057, −3.550404191625297, −2.916417280710592, −2.500402423227632, −1.599324776453867, −1.046989767060511, −0.2113620830817361, 0.2113620830817361, 1.046989767060511, 1.599324776453867, 2.500402423227632, 2.916417280710592, 3.550404191625297, 3.990847262975057, 4.427337183930577, 5.282231724224303, 5.663643265080427, 6.004808701571733, 6.546629941607329, 7.035071998947284, 7.371237656094209, 7.891182244236306, 8.711754114196924, 9.028329536772274, 9.483792180387833, 9.864756357650455, 10.42031833771245, 10.76425830505191, 11.31170838587878, 11.73418912297915, 12.16154904870512, 12.72673812433141

Graph of the $Z$-function along the critical line