Properties

Label 2-31680-1.1-c1-0-17
Degree $2$
Conductor $31680$
Sign $1$
Analytic cond. $252.966$
Root an. cond. $15.9049$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 4·7-s − 11-s − 4·13-s − 4·17-s − 4·19-s + 6·23-s + 25-s − 10·29-s − 4·31-s + 4·35-s − 2·37-s + 10·41-s − 8·43-s − 6·47-s + 9·49-s + 2·53-s − 55-s + 4·59-s + 10·61-s − 4·65-s − 2·67-s + 12·73-s − 4·77-s − 8·79-s − 4·85-s + 10·89-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.51·7-s − 0.301·11-s − 1.10·13-s − 0.970·17-s − 0.917·19-s + 1.25·23-s + 1/5·25-s − 1.85·29-s − 0.718·31-s + 0.676·35-s − 0.328·37-s + 1.56·41-s − 1.21·43-s − 0.875·47-s + 9/7·49-s + 0.274·53-s − 0.134·55-s + 0.520·59-s + 1.28·61-s − 0.496·65-s − 0.244·67-s + 1.40·73-s − 0.455·77-s − 0.900·79-s − 0.433·85-s + 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 31680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 31680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(31680\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(252.966\)
Root analytic conductor: \(15.9049\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 31680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.228579716\)
\(L(\frac12)\) \(\approx\) \(2.228579716\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.98967017694166, −14.63169230034219, −14.18795953285603, −13.40567977302406, −12.92385814658260, −12.63845199956718, −11.71280650635241, −11.22072940349014, −10.97761661186902, −10.34103913290050, −9.634717365049078, −9.096695875346162, −8.582659250769938, −8.009303999080687, −7.336776894525954, −6.994920250264955, −6.182633360391737, −5.321716515346306, −5.098259074330408, −4.464013407415887, −3.798402230901785, −2.772507229748219, −2.039828134135601, −1.765445788261497, −0.5427414738500303, 0.5427414738500303, 1.765445788261497, 2.039828134135601, 2.772507229748219, 3.798402230901785, 4.464013407415887, 5.098259074330408, 5.321716515346306, 6.182633360391737, 6.994920250264955, 7.336776894525954, 8.009303999080687, 8.582659250769938, 9.096695875346162, 9.634717365049078, 10.34103913290050, 10.97761661186902, 11.22072940349014, 11.71280650635241, 12.63845199956718, 12.92385814658260, 13.40567977302406, 14.18795953285603, 14.63169230034219, 14.98967017694166

Graph of the $Z$-function along the critical line