Properties

Label 2-312650-1.1-c1-0-20
Degree $2$
Conductor $312650$
Sign $-1$
Analytic cond. $2496.52$
Root an. cond. $49.9652$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 4·7-s − 8-s − 3·9-s − 3·11-s + 4·14-s + 16-s + 4·17-s + 3·18-s + 3·22-s − 3·23-s − 4·28-s + 6·29-s − 3·31-s − 32-s − 4·34-s − 3·36-s − 37-s + 5·41-s − 6·43-s − 3·44-s + 3·46-s + 8·47-s + 9·49-s + 2·53-s + 4·56-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.51·7-s − 0.353·8-s − 9-s − 0.904·11-s + 1.06·14-s + 1/4·16-s + 0.970·17-s + 0.707·18-s + 0.639·22-s − 0.625·23-s − 0.755·28-s + 1.11·29-s − 0.538·31-s − 0.176·32-s − 0.685·34-s − 1/2·36-s − 0.164·37-s + 0.780·41-s − 0.914·43-s − 0.452·44-s + 0.442·46-s + 1.16·47-s + 9/7·49-s + 0.274·53-s + 0.534·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312650\)    =    \(2 \cdot 5^{2} \cdot 13^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(2496.52\)
Root analytic conductor: \(49.9652\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 312650,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 3 T + p T^{2} \) 1.31.d
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.70880790186887, −12.39196243941391, −12.01000793327817, −11.52033372421050, −10.87064406832579, −10.47286428205190, −10.16036790124275, −9.687526637116165, −9.180778793087510, −8.879510377858654, −8.226161944235548, −7.834536662615258, −7.467360960417031, −6.772260405550860, −6.315923759341945, −6.011231361079880, −5.373764835796964, −5.089518521095226, −4.086495607433924, −3.599972439607484, −3.001405987621938, −2.723980433912554, −2.185432262538855, −1.266342033728577, −0.5349630104538323, 0, 0.5349630104538323, 1.266342033728577, 2.185432262538855, 2.723980433912554, 3.001405987621938, 3.599972439607484, 4.086495607433924, 5.089518521095226, 5.373764835796964, 6.011231361079880, 6.315923759341945, 6.772260405550860, 7.467360960417031, 7.834536662615258, 8.226161944235548, 8.879510377858654, 9.180778793087510, 9.687526637116165, 10.16036790124275, 10.47286428205190, 10.87064406832579, 11.52033372421050, 12.01000793327817, 12.39196243941391, 12.70880790186887

Graph of the $Z$-function along the critical line