Properties

Label 2-310464-1.1-c1-0-296
Degree $2$
Conductor $310464$
Sign $-1$
Analytic cond. $2479.06$
Root an. cond. $49.7902$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s − 11-s + 6·13-s + 2·19-s + 4·23-s + 11·25-s − 2·29-s − 2·31-s − 2·37-s − 4·43-s − 6·47-s + 2·53-s + 4·55-s + 14·61-s − 24·65-s − 12·67-s + 8·71-s + 4·73-s − 8·79-s + 2·83-s − 14·89-s − 8·95-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 1.78·5-s − 0.301·11-s + 1.66·13-s + 0.458·19-s + 0.834·23-s + 11/5·25-s − 0.371·29-s − 0.359·31-s − 0.328·37-s − 0.609·43-s − 0.875·47-s + 0.274·53-s + 0.539·55-s + 1.79·61-s − 2.97·65-s − 1.46·67-s + 0.949·71-s + 0.468·73-s − 0.900·79-s + 0.219·83-s − 1.48·89-s − 0.820·95-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 310464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 310464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(310464\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(2479.06\)
Root analytic conductor: \(49.7902\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 310464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 4 T + p T^{2} \) 1.5.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72673422956921, −12.54857411414869, −11.69674504386766, −11.59357037116884, −11.13622063840280, −10.78648691052287, −10.30761345537702, −9.639133499561349, −9.059287384544684, −8.600813911191467, −8.239287400065610, −7.942292635965156, −7.247047456755296, −6.972354642517247, −6.484347238822071, −5.747846114619953, −5.302678569915718, −4.741977878723940, −4.111359740871098, −3.824874248704905, −3.171222972987733, −3.041277849713019, −1.985760465798555, −1.257296758009915, −0.7261740857525457, 0, 0.7261740857525457, 1.257296758009915, 1.985760465798555, 3.041277849713019, 3.171222972987733, 3.824874248704905, 4.111359740871098, 4.741977878723940, 5.302678569915718, 5.747846114619953, 6.484347238822071, 6.972354642517247, 7.247047456755296, 7.942292635965156, 8.239287400065610, 8.600813911191467, 9.059287384544684, 9.639133499561349, 10.30761345537702, 10.78648691052287, 11.13622063840280, 11.59357037116884, 11.69674504386766, 12.54857411414869, 12.72673422956921

Graph of the $Z$-function along the critical line