Properties

Label 2-310464-1.1-c1-0-302
Degree $2$
Conductor $310464$
Sign $-1$
Analytic cond. $2479.06$
Root an. cond. $49.7902$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 11-s − 2·13-s + 6·17-s − 8·23-s − 25-s + 6·29-s + 4·31-s + 2·37-s + 6·41-s + 8·43-s + 8·47-s + 2·53-s + 2·55-s − 4·59-s − 2·61-s + 4·65-s + 12·67-s − 10·73-s − 4·83-s − 12·85-s − 14·89-s − 2·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.301·11-s − 0.554·13-s + 1.45·17-s − 1.66·23-s − 1/5·25-s + 1.11·29-s + 0.718·31-s + 0.328·37-s + 0.937·41-s + 1.21·43-s + 1.16·47-s + 0.274·53-s + 0.269·55-s − 0.520·59-s − 0.256·61-s + 0.496·65-s + 1.46·67-s − 1.17·73-s − 0.439·83-s − 1.30·85-s − 1.48·89-s − 0.203·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 310464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 310464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(310464\)    =    \(2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(2479.06\)
Root analytic conductor: \(49.7902\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 310464,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.61010275487770, −12.34973012823858, −12.01098283014120, −11.71194970082213, −11.05405017027416, −10.57763519290665, −10.17257674923558, −9.654460091384092, −9.406770832105557, −8.524509136302781, −8.169287442107451, −7.849327226944456, −7.411522777272500, −6.985254755839404, −6.251170062190531, −5.745052559827317, −5.485690110111453, −4.640358627950687, −4.234299396613116, −3.901534045485275, −3.181491031659268, −2.676471343794644, −2.198164730327936, −1.283134404941428, −0.7295751833652960, 0, 0.7295751833652960, 1.283134404941428, 2.198164730327936, 2.676471343794644, 3.181491031659268, 3.901534045485275, 4.234299396613116, 4.640358627950687, 5.485690110111453, 5.745052559827317, 6.251170062190531, 6.985254755839404, 7.411522777272500, 7.849327226944456, 8.169287442107451, 8.524509136302781, 9.406770832105557, 9.654460091384092, 10.17257674923558, 10.57763519290665, 11.05405017027416, 11.71194970082213, 12.01098283014120, 12.34973012823858, 12.61010275487770

Graph of the $Z$-function along the critical line