| L(s)  = 1 | − 2·5-s             − 11-s     − 2·13-s         + 6·17-s             − 8·23-s     − 25-s         + 6·29-s     + 4·31-s             + 2·37-s         + 6·41-s     + 8·43-s         + 8·47-s             + 2·53-s     + 2·55-s         − 4·59-s     − 2·61-s         + 4·65-s     + 12·67-s             − 10·73-s                     − 4·83-s     − 12·85-s         − 14·89-s                 − 2·97-s         + 101-s     + 103-s         + 107-s     + 109-s  + ⋯ | 
| L(s)  = 1 | − 0.894·5-s             − 0.301·11-s     − 0.554·13-s         + 1.45·17-s             − 1.66·23-s     − 1/5·25-s         + 1.11·29-s     + 0.718·31-s             + 0.328·37-s         + 0.937·41-s     + 1.21·43-s         + 1.16·47-s             + 0.274·53-s     + 0.269·55-s         − 0.520·59-s     − 0.256·61-s         + 0.496·65-s     + 1.46·67-s             − 1.17·73-s                     − 0.439·83-s     − 1.30·85-s         − 1.48·89-s                 − 0.203·97-s         + 0.0995·101-s     + 0.0985·103-s         + 0.0966·107-s     + 0.0957·109-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 310464 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 310464 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 \) |  | 
|  | 7 | \( 1 \) |  | 
|  | 11 | \( 1 + T \) |  | 
| good | 5 | \( 1 + 2 T + p T^{2} \) | 1.5.c | 
|  | 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c | 
|  | 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag | 
|  | 19 | \( 1 + p T^{2} \) | 1.19.a | 
|  | 23 | \( 1 + 8 T + p T^{2} \) | 1.23.i | 
|  | 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag | 
|  | 31 | \( 1 - 4 T + p T^{2} \) | 1.31.ae | 
|  | 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac | 
|  | 41 | \( 1 - 6 T + p T^{2} \) | 1.41.ag | 
|  | 43 | \( 1 - 8 T + p T^{2} \) | 1.43.ai | 
|  | 47 | \( 1 - 8 T + p T^{2} \) | 1.47.ai | 
|  | 53 | \( 1 - 2 T + p T^{2} \) | 1.53.ac | 
|  | 59 | \( 1 + 4 T + p T^{2} \) | 1.59.e | 
|  | 61 | \( 1 + 2 T + p T^{2} \) | 1.61.c | 
|  | 67 | \( 1 - 12 T + p T^{2} \) | 1.67.am | 
|  | 71 | \( 1 + p T^{2} \) | 1.71.a | 
|  | 73 | \( 1 + 10 T + p T^{2} \) | 1.73.k | 
|  | 79 | \( 1 + p T^{2} \) | 1.79.a | 
|  | 83 | \( 1 + 4 T + p T^{2} \) | 1.83.e | 
|  | 89 | \( 1 + 14 T + p T^{2} \) | 1.89.o | 
|  | 97 | \( 1 + 2 T + p T^{2} \) | 1.97.c | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.61010275487770, −12.34973012823858, −12.01098283014120, −11.71194970082213, −11.05405017027416, −10.57763519290665, −10.17257674923558, −9.654460091384092, −9.406770832105557, −8.524509136302781, −8.169287442107451, −7.849327226944456, −7.411522777272500, −6.985254755839404, −6.251170062190531, −5.745052559827317, −5.485690110111453, −4.640358627950687, −4.234299396613116, −3.901534045485275, −3.181491031659268, −2.676471343794644, −2.198164730327936, −1.283134404941428, −0.7295751833652960, 0, 
0.7295751833652960, 1.283134404941428, 2.198164730327936, 2.676471343794644, 3.181491031659268, 3.901534045485275, 4.234299396613116, 4.640358627950687, 5.485690110111453, 5.745052559827317, 6.251170062190531, 6.985254755839404, 7.411522777272500, 7.849327226944456, 8.169287442107451, 8.524509136302781, 9.406770832105557, 9.654460091384092, 10.17257674923558, 10.57763519290665, 11.05405017027416, 11.71194970082213, 12.01098283014120, 12.34973012823858, 12.61010275487770
