Properties

Label 2-304-1.1-c1-0-7
Degree $2$
Conductor $304$
Sign $-1$
Analytic cond. $2.42745$
Root an. cond. $1.55802$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 3·7-s − 2·9-s − 2·11-s + 13-s − 5·17-s − 19-s + 3·21-s + 23-s − 5·25-s + 5·27-s − 3·29-s − 4·31-s + 2·33-s + 2·37-s − 39-s − 8·41-s + 8·43-s + 8·47-s + 2·49-s + 5·51-s + 9·53-s + 57-s − 59-s + 14·61-s + 6·63-s − 13·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.13·7-s − 2/3·9-s − 0.603·11-s + 0.277·13-s − 1.21·17-s − 0.229·19-s + 0.654·21-s + 0.208·23-s − 25-s + 0.962·27-s − 0.557·29-s − 0.718·31-s + 0.348·33-s + 0.328·37-s − 0.160·39-s − 1.24·41-s + 1.21·43-s + 1.16·47-s + 2/7·49-s + 0.700·51-s + 1.23·53-s + 0.132·57-s − 0.130·59-s + 1.79·61-s + 0.755·63-s − 1.58·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304\)    =    \(2^{4} \cdot 19\)
Sign: $-1$
Analytic conductor: \(2.42745\)
Root analytic conductor: \(1.55802\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 304,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 5 T + p T^{2} \) 1.17.f
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 10 T + p T^{2} \) 1.83.k
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20072332430483839043066410359, −10.47040915981345192829319556956, −9.389846141086456194104312076880, −8.517458100677749789097011376696, −7.18297506166153508271072468025, −6.21150502900434643631796858377, −5.41676012615338774687665516924, −3.93346432196685798564362812764, −2.56005012019129152265351485884, 0, 2.56005012019129152265351485884, 3.93346432196685798564362812764, 5.41676012615338774687665516924, 6.21150502900434643631796858377, 7.18297506166153508271072468025, 8.517458100677749789097011376696, 9.389846141086456194104312076880, 10.47040915981345192829319556956, 11.20072332430483839043066410359

Graph of the $Z$-function along the critical line