Properties

Label 2-30324-1.1-c1-0-10
Degree $2$
Conductor $30324$
Sign $1$
Analytic cond. $242.138$
Root an. cond. $15.5607$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 6·11-s − 2·13-s − 21-s − 6·23-s − 5·25-s − 27-s − 6·29-s − 8·31-s + 6·33-s − 2·37-s + 2·39-s − 12·41-s − 4·43-s + 12·47-s + 49-s + 6·53-s − 10·61-s + 63-s − 8·67-s + 6·69-s − 6·71-s − 10·73-s + 5·75-s − 6·77-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 1.80·11-s − 0.554·13-s − 0.218·21-s − 1.25·23-s − 25-s − 0.192·27-s − 1.11·29-s − 1.43·31-s + 1.04·33-s − 0.328·37-s + 0.320·39-s − 1.87·41-s − 0.609·43-s + 1.75·47-s + 1/7·49-s + 0.824·53-s − 1.28·61-s + 0.125·63-s − 0.977·67-s + 0.722·69-s − 0.712·71-s − 1.17·73-s + 0.577·75-s − 0.683·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30324 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30324\)    =    \(2^{2} \cdot 3 \cdot 7 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(242.138\)
Root analytic conductor: \(15.5607\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 30324,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.57519334460699, −15.23340259623677, −14.75248225522052, −13.91263269680853, −13.48486077154235, −13.07660703150546, −12.31701715709444, −12.03067718386861, −11.37529114107759, −10.79985623658582, −10.28704116149626, −9.984698028058618, −9.216345078405396, −8.500435077349755, −7.917272343501993, −7.379950768631112, −7.076679321581204, −5.913865753766269, −5.642266454946787, −5.154513544659710, −4.427070919548248, −3.788792829118432, −2.934628808897710, −2.114035956311888, −1.620993897777725, 0, 0, 1.620993897777725, 2.114035956311888, 2.934628808897710, 3.788792829118432, 4.427070919548248, 5.154513544659710, 5.642266454946787, 5.913865753766269, 7.076679321581204, 7.379950768631112, 7.917272343501993, 8.500435077349755, 9.216345078405396, 9.984698028058618, 10.28704116149626, 10.79985623658582, 11.37529114107759, 12.03067718386861, 12.31701715709444, 13.07660703150546, 13.48486077154235, 13.91263269680853, 14.75248225522052, 15.23340259623677, 15.57519334460699

Graph of the $Z$-function along the critical line