Properties

Label 2-3024-1.1-c1-0-5
Degree $2$
Conductor $3024$
Sign $1$
Analytic cond. $24.1467$
Root an. cond. $4.91393$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 7-s + 6·11-s − 4·13-s − 3·17-s − 2·19-s − 6·23-s + 4·25-s + 6·29-s + 4·31-s + 3·35-s − 7·37-s + 3·41-s + 43-s + 9·47-s + 49-s + 6·53-s − 18·55-s + 9·59-s − 10·61-s + 12·65-s + 4·67-s + 2·73-s − 6·77-s + 79-s + 3·83-s + 9·85-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.377·7-s + 1.80·11-s − 1.10·13-s − 0.727·17-s − 0.458·19-s − 1.25·23-s + 4/5·25-s + 1.11·29-s + 0.718·31-s + 0.507·35-s − 1.15·37-s + 0.468·41-s + 0.152·43-s + 1.31·47-s + 1/7·49-s + 0.824·53-s − 2.42·55-s + 1.17·59-s − 1.28·61-s + 1.48·65-s + 0.488·67-s + 0.234·73-s − 0.683·77-s + 0.112·79-s + 0.329·83-s + 0.976·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3024\)    =    \(2^{4} \cdot 3^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(24.1467\)
Root analytic conductor: \(4.91393\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3024,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.078499554\)
\(L(\frac12)\) \(\approx\) \(1.078499554\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 3 T + p T^{2} \) 1.83.ad
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.644890615125473184723296713633, −8.048911376131231568860835984621, −7.04562425666546931796340536619, −6.74621439114006943593472598781, −5.76520801586940676795776197507, −4.35727880808405451130327441222, −4.24558244070364871306815689163, −3.25082978104382749561512942653, −2.10371002829409123939002347931, −0.61846901235906980408646092164, 0.61846901235906980408646092164, 2.10371002829409123939002347931, 3.25082978104382749561512942653, 4.24558244070364871306815689163, 4.35727880808405451130327441222, 5.76520801586940676795776197507, 6.74621439114006943593472598781, 7.04562425666546931796340536619, 8.048911376131231568860835984621, 8.644890615125473184723296713633

Graph of the $Z$-function along the critical line